Speech and Language Processing

Lecture 2
Maximum likelihood estimation and EM algorithm

Information and Communications Engineering Course
Takahiro Shinozaki

2018/10/26
Lecture Plan (Shinozaki’s part)

I gives the first 6 lectures about speech recognition. Through these lectures, the backbone of the latest speech recognition techniques is explained.

1. 10/19 (remote)
 Speech recognition based on GMM, HMM, and N-gram
2. 10/26 (remote)
 Maximum likelihood estimation and EM algorithm
3. 11/5 (remote)
 Bayesian network and Bayesian inference
4. 11/5 (@TAIST)
 Variational inference and sampling
5. 11/6 (@TAIST)
 Neural network based acoustic and language models
6. 11/6 (@TAIST)
 Weighted finite state transducer (WFST) and speech decoding
Today’s Topic

• Answers for the previous exercises
• Brief review of probability theory
• Maximum likelihood estimation
• Expectation maximization (EM) algorithm
Answers for the Previous Exercises
Suppose W is a vowel and O is an MFCC feature vector. Suppose that $P_{AM}(O \mid W)$ is an acoustic model and $P_{LM}(W)$ is a language model. Obtain a vowel \hat{W} that maximizes $P(W \mid O)$ when the acoustic and language model log likelihoods are given as in the following table.

$$\hat{W} = \arg \max_{W \in \{a, i, u, e, o\}} \{P(W \mid O)\}$$

<table>
<thead>
<tr>
<th>Vowel W</th>
<th>a</th>
<th>i</th>
<th>u</th>
<th>e</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log(P(O \mid W))$</td>
<td>-13.4</td>
<td>-10.5</td>
<td>-30.1</td>
<td>-15.2</td>
<td>-17.0</td>
</tr>
<tr>
<td>$\log(P(W))$</td>
<td>-1.61</td>
<td>-2.30</td>
<td>-1.61</td>
<td>-1.39</td>
<td>-1.39</td>
</tr>
</tbody>
</table>
Exercise 1.2 (Answer)

The following table defines a Bi-gram \(P(\text{Word} | \text{Context}) \)

<table>
<thead>
<tr>
<th>C \ W</th>
<th>today</th>
<th>is</th>
<th>sunny</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>0.6</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>today</td>
<td>0.1</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>is</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>sunny</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

\(P(\text{Start}) = 1.0 \)

Example:

\[
\text{Start} \rightarrow \text{today} \rightarrow \text{is} \rightarrow \text{sunny} \rightarrow \text{End}
\]

\[
1.0 \times 0.6 \times 0.5 \times 0.7 \times 0.6 = 0.126
\]
Exercise 1.2 (Cont.) (Answer)

• Based on the bigram definition of the previous slide, compute the probability of the following sentences

1) \[P(\text{"Start today sunny today sunny End"}) \]
 \[
 = \frac{0.6 \times 0.3 \times 0.1 \times 0.3 \times 0.6}{0.6 \times 0.3 \times 0.1 \times 0.3 \times 0.6} = 1
 \]

2) \[P(\text{"Start today today sunny sunny End"}) \]
 \[
 = \frac{0.6 \times 0.1 \times 0.3 \times 0.2 \times 0.6}{0.6 \times 0.1 \times 0.3 \times 0.2 \times 0.6} = 1
 \]
Brief Review of Probability Theory
Probability Space

• Sample space (Ω)
 • Set of all possible outcomes of an experiment

• Probability function ($f(x)$)
 • A function that maps each outcome to a probability
 \[f(x) \in [0, 1] \quad \text{for all } x \in \Omega \]
 \[\sum_{x \in \Omega} f(x) = 1 \]

• Event (E)
 • Subset of the sample space
 Probability of an event E is:
 \[P(E) = \sum_{x \in E} f(x) \]
Random Variable

• A function that maps an outcome of an experiment to a value
 • Notation:
 \[P[X=x] = p \] means “the probability of a random variable \(X \) takes a value \(x \) is \(p \)”

Example

\[\begin{array}{c|cccccc}
\text{Random Variable} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
X & 1 & 2 & 3 & 4 & 5 & 6 \\
Y & 1 & 0 & 1 & 0 & 1 & 0 \\
Z & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array} \]

X: The value of a die
Y: Whether the value of a die is odd number or not
Z: Whether the value of a die is larger than 2 or not
Joint Probability

• Probability that more than one events jointly occur

Example

\[X : \text{Dice 1} \]
\[Y : \text{Dice 2} \]

\[P(X = i, Y = j) : \text{Probability that the value of } X \text{ is } i \text{ and the value of } Y \text{ is } j \]

Note: \[P(X=i, Y=j) = P(Y=j, X=i) \]
Conditional Probability

• Probability of an event given that another event has occurred

Example

Randomly picks up two balls sequentially from a box containing 4 blue and 6 green balls

\(X\) : Color of the first ball

\(Y\) : Color of the second ball

\[P(Y = \text{blue} \mid X = \text{green}) = \frac{4}{9}\]

\[P(Y = \text{blue} \mid X = \text{blue}) = \frac{3}{9}\]
Two Principal Rules

• Sum rule
 • Summing joint probability $P(X,Y)$ for all possible values of Y gives probability of $P(X)$
 • $P(X)$ is called the marginal probability

$$P(X = x_i) = \sum_j P(X = x_i, Y = y_j)$$

• Product rule
 • Multiplying probability $P(X)$ and joint probability $P(Y|X)$ is equal to joint probability $P(X,Y)$

$$P(X = x_i, Y = y_j) = P(Y = y_j | X = x_i)P(X = x_i)$$
Bayes’ Theorem

- From the product rule, we obtain:

\[P(Y = y_j \mid X = x_i) = \frac{P(X = x_i \mid Y = y_j)P(Y = y_j)}{P(X = x_i)} \quad \text{for } \forall x_i, y_i \]

If we denote the distributions as \(P(X) \) etc., we have:

\[P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)} \]

Using the sum rule, it can be expressed as:

\[P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)} = \frac{P(X \mid Y)P(Y)}{\sum_Y P(X,Y)} = \frac{P(X \mid Y)P(Y)}{\sum_Y P(X \mid Y)P(Y)} \]
Independence

• If the joint distribution of two variables X and Y factorizes into the product of the marginals, then X and Y are said to be “independent”

\[P(X, Y) = P(X | Y)P(Y) = P(X)P(Y) \quad \Rightarrow \quad X \text{ and } Y \text{ are independent} \]

\[P(X, Y) = P(X | Y)P(Y) \neq P(X)P(Y) \quad \Rightarrow \quad X \text{ and } Y \text{ are not independent} \]
Probability Densities

- If the probability of a real-valued variable x falling in the interval $(x, x + \delta x)$ is given by $p(x)\delta x$ when $\delta x \to 0$, $p(x)$ is called the probability density of x.

$p(x)\delta x$ is probability \Rightarrow $p(x) \geq 0$ and $\int_{-\infty}^{\infty} p(x)dx = 1$
The Sum and The Product Rules For Continuous Variable

\[P(X = x_i) = \sum_j P(X = x_i, Y = y_j) \]

\[p(x) = \int p(x, y)dy \]

\[P(X = x_i, Y = y_j) = P(Y = y_j \mid X = x_i)P(X = x_i) \]

\[p(x, y) = p(y \mid x)p(x) \]
Expectation

- Expectation of a function $f(x)$ under a probability distribution $p(x)$ is denoted by $E[f]$

$$E[f] = \sum_x p(x)f(x) \quad (x \text{ is discrete})$$

$$E[f] = \int p(x)f(x)dx \quad (x \text{ is continuous})$$
Mean and Variance

• Mean
 • Synonym of the expectation $E[f(x)]$

• Variance
 • A measure of how much variability there is in $f(x)$ around its mean value $E[f(x)]$

$$\text{var}[f] \equiv E\left[\left(f(x) - E[f(x)]\right)^2\right] = E[f(x)^2] - E[f(x)]^2$$

• In particular, the variance of the variable x itself is:

$$\text{var}[x] = E\left[(x - E[x])^2\right]$$
Covariance

- Covariance
 - The extent to which x and y vary together

$$\text{cov}[x, y] \equiv E_{x,y} [(x - E[x])(y - E[y])]$$

$$= E_{x,y} [xy] - E[x]E[y]$$

Expectation with respect to joint probability of x and y
Entropy

• Amount of randomness in the random variable

\[H[x] = E[-\log(p(x))] = -\sum_x p(x)\log p(x) \]

Example

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(x)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[H[x] = -0.5\log(0.5) - 0.5\log(0.5) \]
\[= 0.693 \]

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(x)</td>
<td>0.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

\[H[x] = -0.1\log(0.1) - 0.9\log(0.9) \]
\[= 0.325 \]
Relative Entropy

• A measure of dissimilarity of two distributions p and q
 • Also called as kullback-Leibler (KL) divergence

\[
KL(p \parallel q) = E_p \left[\log \left(\frac{p(x)}{q(x)} \right) \right] = -\int p(x) \log \left(\frac{q(x)}{p(x)} \right) dx
\]

• $KL(p \parallel q)$ is nonnegative.
 $KL(p \parallel q) = 0$ if and only if $p(x) = q(x)$

Note: $KL(p \parallel q) \neq KL(q \parallel p)$
Maximum Likelihood Estimation
Maximum Likelihood (ML) Method

• Assume that we have a set of samples \(D = \{x_1, x_2, \ldots, x_n\} \) drawn from a distribution \(p(x|\theta) \) with unknown parameters \(\theta \), and we want to estimate \(\theta \)

• Maximum likelihood method estimates the parameters by maximizing likelihood \(p(D|\theta) \)

\[
\hat{\theta} = \arg \max_{\theta} p(D | \theta) = \arg \max_{\theta} \prod_{i=1}^{n} p(x_i | \theta)
\]

Decomposed to a product when the samples are drawn independently
Bernoulli Distribution

• Probability distribution of a binary random variable which takes value 1 with probability μ and value 0 with probability $1-\mu$

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bern(x)</td>
<td>$1-\mu$</td>
<td>μ</td>
</tr>
</tbody>
</table>

$Bern(x) = \mu^x (1 - \mu)^{1-x}$

Is the result Head or Tail?
ML Estimation for Bernoulli Distribution

- Parameter θ in this case is: μ
- Training sample $x_i = 0 \text{ or } 1$

\[
\hat{\mu} = \arg \max_{\mu} p(D \mid \mu) = \arg \max_{\mu} \prod_{i=1}^{n} \mu^{x_i} (1 - \mu)^{1-x_i}
\]

\[
= \arg \max_{\mu} \log \left(\prod_{i} \mu^{x_i} (1 - \mu)^{1-x_i} \right)
\]

\[
= \arg \max_{\mu} \left\{ \sum_{i} x_i \log(\mu) + \sum_{i} (1-x_i) \log(1-\mu) \right\}
\]

\[
\frac{\partial}{\partial \mu} \left(\sum_{i} x_i \log(\mu) + \sum_{i} (1-x_i) \log(1-\mu) \right) = 0
\]

\[
\mu = \frac{1}{n} \sum_{i} x_i \quad \text{n: the number of samples}
\]
Example

• You tossed a winded coin 100 times, and got 62 heads and 38 tails. Estimate the probability μ of getting head with the coin by the ML method.
Categorical Distribution

As a generalization of the Bernoulli Distribution, let's consider a discrete random variable X that takes K values.

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-of-K</td>
<td>$<1,0,...,0>$</td>
<td>$<0,1,...,0>$</td>
<td>...</td>
<td>$<0,0,...,1>$</td>
</tr>
<tr>
<td>$p(X)$</td>
<td>μ_1</td>
<td>μ_2</td>
<td>...</td>
<td>μ_K</td>
</tr>
</tbody>
</table>

$p(x | \mu) = \prod_{k=1}^{K} \mu_k^{x_k}$
ML for Categorical Distribution

- Parameter θ in this case is: $\mu = \{\mu_1, \mu_2, \ldots, \mu_K\}$
- Training sample x_i is a vector of 1-of-K representation. When x_i represents k-th value, $x_{i,k} = 1$, and $x_{i,j} = 0$ for $j \neq k$

\[
\hat{\mu} = \arg \max_\mu p(D | \mu) = \arg \max_\mu \prod_{i=1}^{n} \prod_{k=1}^{K} \mu_k^{x_{i,k}} = \arg \max_\mu \prod_{k=1}^{K} \mu_k^{m_k}
\]

\[
\sum_{k=1}^{K} \mu_k = 1 \quad \text{Constraint}
\]

m_k is the number of the occurrence of k-th value, where n is the number of samples

This is a maximization problem with a constraint

Use the method of Lagrange multiplier (c.f. Appendix)
Solution

\[
\hat{\mu} = \arg \max_{\mu} \prod_{k=1}^{K} \mu_k^{m_k} = \arg \max_{\mu} \sum_{k=1}^{K} m_k \log(\mu_k)
\]

\[
\sum_{k=1}^{K} \mu_k = 1
\]

\[
\hat{\mu} = \arg \max_{\mu} \left\{ \sum_{k=1}^{K} m_k \log \mu_k + \lambda \left(\sum_{k=1}^{K} \mu_k - 1 \right) \right\}
\]

\[
\mu_k = \frac{m_k}{n}
\]
Exercise 2.1

• Show the derivation process of obtaining \(\mu_k = \frac{m_k}{n} \)

for the categorical distribution by maximizing

\[
L(\mu, \lambda) = \sum_{k=1}^{K} m_k \log \mu_k + \lambda \left(\sum_{k=1}^{K} \mu_k - 1 \right)
\]

where \(\lambda \) is the Lagrange multiplier.
ML Estimation for Gaussian Distribution

Gaussian distribution:

\[
N(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x - \mu)^2\right\}
\]

Parameter \(\theta \) in this case is: \(\{\mu, \sigma\} \)

Training sample \(x_i \) is a real value

ML estimation of Gaussian distribution

\[
\hat{\theta} = \text{arg max}_\theta \prod_{i=1}^{n} N(x_i \mid \theta) = \text{arg max}_\theta \sum_{i=1}^{n} \log(N(x_i \mid \theta))
\]

\[
\int_{-\infty}^{\infty} N(x \mid \mu, \sigma^2)dx = 1
\]
Exercise 2.2

• Derive the ML solution \(\{\hat{\mu}, \hat{\sigma}\} \) of the Gaussian distribution. The derivation process must be described.
ML Estimation for GMM with Known Index

- Let’s consider 2-mix GMM (component index m is 1 or 2)
- A training sample $x_i = <o_i, m_i>$ is a pair of an observation o_i and an index of Gaussian component m_i, where i is a sample index

$$L(\mu_1, \sigma_1, w_1, \mu_2, \sigma_2, w_2) = \log \prod_{i=1}^{n} w_{m_i} N(o_i | \mu_{m_i}, \sigma_{m_i}) = \sum_{i=1}^{n} \log(w_{m_i} N(o_i | \mu_{m_i}, \sigma_{m_i}))$$

$$= \sum_{i=1}^{n} \log(w_{m_i}) + \sum_{i|m_i=1} \log(N(o_i | \mu_1, \sigma_1)) + \sum_{i|m_i=2} \log(N(o_i | \mu_2, \sigma_2)), \quad w_1 + w_2 = 1.0$$

$$\text{arg max } L(\mu_1, \sigma_1, w_1, \mu_2, \sigma_2, w_2) \quad \leftrightarrow \quad \text{arg max } \sum_{i=1}^{n} \log(w_{m_i})$$

The components can be optimized independently
ML Estimation for HMM with Known Path

• Both observation and state sequences are given
 • Transition probability: Transition probability from state \(i \) to \(j \) is obtained by dividing the number of transitions from state \(i \) to \(j \) by the number of transition from state \(i \)
 • Emission probability: ML estimate of the emission distribution based on the observations assigned to the state

Example: (Observation is a binary value taking ‘a’ or ‘b’)
When \(O=(a,b,a,b,b) \) and \(K=(s_0,s_1,s_1,s_2,s_2,s_2,s_3) \)

Transition probability
\[
\begin{align*}
p(s_1 \rightarrow s_1) &= 1/2, \\
p(s_1 \rightarrow s_2) &= 1/2, \\
p(s_2 \rightarrow s_2) &= 2/3, \\
p(s_2 \rightarrow s_3) &= 1/3
\end{align*}
\]

Emission probability
\[
\begin{align*}
p(a \mid s_1) &= 1/2, \\
p(b \mid s_1) &= 1/2, \\
p(a \mid s_2) &= 1/3, \\
p(b \mid s_2) &= 2/3
\end{align*}
\]
Exercise 2.3

• Given a training data D with n training samples $D=\{x_1, x_2, ..., x_n\}$, obtain ML estimation for GMM with M mixtures. You can assume the variance is 1 for simplicity.

\[
\hat{M} = \arg\max_{\langle\mu_1, \mu_2, \ldots, \mu_M\rangle} \left[\prod_{i=1}^{N} \left\{ \sum_{m=1}^{M} w_m \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(X_i - \mu_m)^2}{2} \right) \right\} \right]
\]

\[
= \arg\max_{\langle\mu_1, \mu_2, \ldots, \mu_M\rangle} \left[\sum_{i=1}^{N} \log \left\{ \sum_{m=1}^{M} w_m \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(X_i - \mu_m)^2}{2} \right) \right\} \right]
\]
Exercise 2.3 (Cont.)

\[L = \sum_{i=1}^{N} \log \left\{ \sum_{m=1}^{M} w_m \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{(X_i - \mu_m)^2}{2} \right) \right\} \]

\[\frac{\partial L}{\partial \mu_m} = \text{EM algorithm} \]
Expectation Maximization (EM) Algorithm
Hidden Variable

• The mixture weight w_m of GMM can be regarded as a probability $P(m)$ since it is non-negative and sum to one.

• Then, the GMM can be seen as a marginal probability of $P(m, x) = P(m)N(x | \mu_m, \sigma_m)$

\[
GMM(x) = \sum_{m=1}^{M} w_m N(x | \mu_m, \sigma_m) = \sum_{m=1}^{M} P(m)N(x | \mu_m, \sigma_m)
\]

• In general, when a probability model is defined as a marginal probability, the summed-out variable is not seen from the outside, and it is called a hidden variable.

• The mixture weight of GMM is a hidden variable.
ML Estimation for Models with Hidden Variables

- The summation Σ for the marginalization is often problematic for optimization

\[
\hat{\Theta} = \arg \max_\Theta \left[P(D | \Theta) \right]
\]

\[
= \arg \max_\Theta \left[\sum_i \log P(x_i | \Theta) \right]
\]

\[
= \arg \max_\Theta \left[\sum_i \log \sum_h P(x_i, h | \Theta) \right]
\]

nuisance
Jensen Lower Bound of Likelihood

Let X be an observed variable, H be a hidden variable, and Θ be a parameter.

\[
\log P(X \mid \Theta) = \log \sum_H P(X, H \mid \Theta)
\]

\[
= \log \sum_H q(H) \frac{P(X, H \mid \Theta)}{q(H)}
\]

\[
\geq \sum_H q(H) \log \frac{P(X, H \mid \Theta)}{q(H)}
\]

This inequality holds for arbitrary q and arbitrary Θ.

Let

\[
J(q, \Theta) = \sum_H q(H) \log \frac{P(X, H \mid \Theta)}{q(H)}
\]

(Lower bound of likelihood)
Exercise 2.4

• Assume you have an initial model parameter Θ_0. Prove that if you take $q(H) = q_0(H) = P(H|X, \Theta_0)$, then the lower bound $J(q_0, \Theta_0)$ is equal to the log likelihood $logP(X|\Theta_0)$

\[\log P(X | \Theta_0) = J(P(H | X, \Theta_0), \Theta_0) \]
Maximization of the Lower Bound

• Assume we have an initial model parameter Θ_0.

$$\Theta_1 = \arg \max_{\Theta} J(P(H \mid X, \Theta_0), \Theta)$$

Because:

$$\log P(X \mid \Theta_0) = J(P(H \mid X, \Theta_0), \Theta_0)$$
$$J(P(H \mid X, \Theta_0), \Theta) \leq \log P(X \mid \Theta) \quad \text{for} \quad \forall \Theta$$
$$J(P(H \mid X, \Theta_0), \Theta_0) \leq J(P(H \mid X, \Theta_0), \Theta_1)$$

By maximizing the lower bound J with respective to Θ, we can find Θ_1 that increases the log likelihood $\log P(X \mid \Theta)$ from the initial value Θ_0.
Relation Between the Likelihood and the Lower Bound

\[f(\Theta) \equiv \log P(X | \Theta) \]
\[g(\Theta) \equiv J(P(H | X, \Theta_0), \Theta) \]
Q-function

Let \[Q(\Theta, \Theta_0) \equiv \sum_{H} P(H \mid X, \Theta_0) \log P(X, H \mid \Theta) \]

\[\arg \max_{\Theta} J(P(H \mid X, \Theta_0), \Theta) \]

\[= \arg \max_{\Theta} \sum_{H} P(H \mid X, \Theta_0) \log \frac{P(X, H \mid \Theta)}{P(H \mid X, \Theta_0)} \]

\[= \arg \max_{\Theta} \left\{ \sum_{H} P(H \mid X, \Theta_0) \log P(X, H \mid \Theta) - \sum_{H} P(H \mid X, \Theta_0) \log P(X, H \mid \Theta_0) \right\} \]

\[= \arg \max_{\Theta} Q(\Theta, \Theta_0) \]

Finding the argmax of \(J \) is equal to finding the argmax of \(Q \)-function \(Q(\Theta, \Theta_0) \)
Expectation Maximization (EM) Algorithm

1. Prepare an initial parameter (or parameter set) Θ_0

2. Given a parameter Θ_t, obtain a Q-function $Q(\Theta, \Theta_t)$, which is an expectation of the log joint probability $\log P(X, H | \Theta)$ with $P(H|X, \Theta_t)$
 [E-step]

3. Maximizing the Q-function $Q(\Theta, \Theta_t)$ and obtain an updated parameter Θ_{t+1}
 [M-step]

4. Go to step 2 until converge
The Process of the EM Algorithm

\(\Theta_0 \)
Initial model parameters.
May be just a random number.

\(\Theta_1 = \arg\max_\Theta [Q(\Theta, \Theta_0)] \)
Update the parameters

\(\Theta_2 = \arg\max_\Theta [Q(\Theta, \Theta_1)] \)
Update the parameters

\(\Theta_3 = \arg\max_\Theta [Q(\Theta, \Theta_2)] \)
Update the parameters

\(\Theta_\infty = \text{local } \arg\max_\Theta \left[\sum_H \log P(X, H | \Theta) \right] \)
Gives a local maximum
(not necessarily the global maximum)
EM for GMM

• Let’s consider 2-mix GMM

• Assume a training data D with n training samples $D=\{o_1, o_2, ..., o_n\}$, and an initial parameter set $\Theta_0 = \{\mu_1^{(0)}, \sigma_1^{(0)}, w_1^{(0)}, \mu_2^{(0)}, \sigma_2^{(0)}, w_2^{(0)}\}$ are given

• The posterior probability $P(m_i | D, \Theta_0)$ of the component index m for the i-th training sample is:

$$P(m_i | D, \Theta_0) = P(m_i | o_i, \Theta_0) = \frac{P(m_i, o_i | \Theta_0)}{\sum_{m=1}^{2} P(m, o_i | \Theta_0)} = \frac{w_m N(o_i | \mu_m^{(0)}, \sigma_m^{(0)})}{\sum_{m=1}^{2} w_m N(o_i | \mu_m^{(0)}, \sigma_m^{(0)})}$$
Exercise 2.5

• Consider the 2-mix GMM of the previous page. Let $\gamma_m(i) = P(m | o_i, \Theta_0)$. Obtains the followings.

$\mu_1^{(1)} = \arg \max_{\mu_1} Q(\Theta, \Theta_0)$

$\sigma_1^{(1)} = \arg \max_{\sigma_1} Q(\Theta, \Theta_0)$

$w_1^{(1)} = \arg \max_{w_1} Q(\Theta, \Theta_0)$

Where

$Q(\Theta, \Theta_0) = \sum_{M = <m_1, m_2, \cdots m_n>} P(M | D, \Theta_0) \log P(D, M | \Theta)$

$= \sum_{i=1}^{n} \sum_{m=1}^{2} P(m | o_i, \Theta_0) \log P(o_i, m | \Theta) = \sum_{i=1}^{n} \sum_{m=1}^{2} \gamma_m(i) \log P(o_i, m | \Theta)$

$\Theta = \{\mu_1, \sigma_1, w_1, \mu_2, \sigma_2, w_2\}$

$i : \text{sample index}$

$m : \text{mixture component index}$
EM Estimation for HMM with Unknown Path

For HMM, path is a hidden variable

When O=\((a, b, b)\), possible paths are:
\(K_1(s_0, s_1, s_1, s_2, s_3)\) and \(K_2(s_0, s_1, s_2, s_2, s_3)\)

\[
P(O, K_1 | \Lambda) = 0.016128
\]
\[
P(O, K_2 | \Lambda) = 0.007168
\]

\begin{align*}
\text{E-step (expectation step)} \\
\text{Posterior probability} & \quad P(K_1 | O, \Lambda) = \frac{P(K_1, O | \Lambda)}{P(O | \Lambda)} = \frac{P(K_1, O | \Lambda)}{\sum_k P(K, O | \Lambda)} = \frac{0.016128}{0.016128 + 0.007168} \approx 0.7, \\
\text{Expectations of transitions} & \quad n(s_1 \rightarrow s_1) = 1 \times 0.7 + 0 \times 0.3 = 0.7 \quad n(s_1 \rightarrow s_2) = 1 \times 0.7 + 1 \times 0.3 = 1 \\
& \quad n(s_2 \rightarrow s_2) = 0 \times 0.7 + 1 \times 0.3 = 0.3 \quad n(s_2 \rightarrow s_3) = 1 \times 0.7 + 1 \times 0.3 = 1 \\
\text{Expectations of emissions} & \quad n(a | s_1) = 1 \times 0.7 + 1 \times 0.3 = 1 \quad n(b | s_1) = 1 \times 0.7 + 0 \times 0.3 = 0.7 \\
& \quad n(a | s_2) = 0 \times 0.7 + 0 \times 0.3 = 0 \quad n(b | s_2) = 1 \times 0.7 + 2 \times 0.3 = 1.3
\end{align*}

\begin{align*}
\text{M-step (maximization step)} \\
\text{New transition probabilities} & \quad p(s_1 \rightarrow s_1) = 0.7 / (0.7 + 1) = 0.41 \quad p(s_1 \rightarrow s_2) = 1 / (0.7 + 1) = 0.59 \\
& \quad p(s_2 \rightarrow s_2) = 0.3 / (0.3 + 1) = 0.23 \quad p(s_2 \rightarrow s_3) = 1 / (0.3 + 1) = 0.77 \\
\text{New emission probabilites} & \quad p(a | s_1) = 1 / (1 + 0.7) = 0.59 \quad p(b | s_1) = 0.7 / (1 + 0.7) = 0.41 \\
& \quad p(a | s_2) = 0 / (0 + 1.3) = 0.00 \quad p(b | s_2) = 1.3 / (0 + 1.3) = 1.00
\end{align*}
Appendix
Method of Lagrange Multiplier

Maximize $f(X)$ subject to $g(X) = 0$

Maximize $f(X) - \lambda g(X)$
with respect to X and λ,
where λ is a new parameter
Jensen’s Inequality

• If \(f(x) \) is a concave function, the following equation holds for arbitrary probability distribution of \(i \)

\[
\sum_{i} p(i)f(x_i) \leq f\left(\sum_{i} p(i)x_i\right)
\]

| Weighted average of function value \(f(x) \) | Function value of weighted average of \(x \) |

Example:

\[0.4f(x_1) + 0.6f(x_2) \leq f(0.4x_1 + 0.6x_2)\]