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Basics of probability distributions



Probability Space

e Sample space ()
* Set of all possible outcomes of an experiment
* Probability function (f(x))

e A function that maps each outcome to a probability

f(x)el0,1] forallxeQ

> f(x)=1

xeQ)

e Event (E)
e Subset of the sample space

Probability of an event E is : P(E) — Z f (X)

xek



Random Variable

* A function that maps an outcome of an experiment
to a value

* Notation:

“P[X=x] = p” means “the probability of a random
variable X takes a value X is p”
Example

X: The value of a die
Y: Whether the value of a die is odd number or not

Z: Whether the value of a die is larger than 2 or not

Random 1 2 3 4 5 6
Variable
X 1 2 3 4 5 6
Y 1 0 1 0 1 0
Z 0 0 1 1 1 1




Joint Probability

* Probability that more than one events jointly occur

Example

X * Dicel
@ Y : Dice2

P(X — i,Y — J) - Probability that t_he value of Xis I and
the value of Y is |

Note: P(X=i, Y=j) = P(Y=j, X=i)



Conditional Probability

* Probability of an event given that another event
has occurred

Example : .
Randomly picks up two balls sequentially from a box

containing 4 blue and 6 green balls

P("second ball is blue"|"first ball is geen") =

OlWeo|

P("second ball is blue"|"first ball is blue") =




Two Principal Rules

e Sum rule

* Summing joint probability P(X,Y) for all possible values
of Y gives probability of P(X)

* P(X) is called the marginal probability
P(X=x)=> P(X=x,Y=Y,)
j

 Product rule

* Product of probability P(X) and conditional probability
P(Y|X) is equal to joint probability P(X,Y)

P(X =x,Y = yj) =P(Y = Yi | X =X%)P(X =X%)



Bayes’ Theorem

* From the product rule, we obtain:
P(X =X |Y — yj)P(Y — yj)

PY =y, [ X =X)=

If we simplify the notation, we have:

P(X =x)

P(Y | X) =

P(XTY)P(Y)

P(X)

for vx., V.

¢ (Bayes’ theorem)

Using the sum rule, P(Y|X) is obtained from joint probability as:

P(Y | X) =

P(X|Y)P(Y)  P(X,Y)

P(X) Y P(X.Y)



Independence

* If the joint distribution of two variables X and Y
factorizes into the product of the marginals, then X
and Y are said to be “independent”

POX,Y) =P(X [Y)P(Y)=P(X)P(Y) wp omdYere

X and Y are not
independent

P(X,Y)=P(X |Y)P(Y)=P(X)P(Y) =



Exercises 1.1,1.2

Joint probability of random variables A and B are
given in the following table. According to the table,
for example,

P(A=0,B=0)=0.2

P(A,B) |B=0 B=1 B=2
A=0 0.2 0.1 0.1
A=1 0.3 0.2 0.1

1. Obtain P(A =0)
2. Obtain P(A = 0|B = 0)



Probability Densities

* If the probability of a real-valued variable X falling
in the interval (X, x+0x) is given by p(X)ox when
ox—0, p(x) is called the probability density of X

p(x)6x is probability =) p(x)>0 and _[ p(x)ix =1

p(x)
p(x) p(x)8x /

Ox




The Sum and The Product Rules For Continuous Variable

P(X =x)=) P(X=x,Y=Yy)

% p(x)=| p(x, y)dy

P(X=x,Y=y;)=P(Y =y, | X=x)P(X =X)

2 p(x,y)=p(y|x)p(x)



Expectation

* Expectation of a function f(X) under a probability
distribution p(X) is denoted by E[f]

E[f ]= Z p(X) f (X) (X is discrete)

E[f ] — j p(X) f (X)dX (X is continuous)



Mean and Variance

* Mean
* Synonym of the expectation E[f(X)]

e Variance

* A measure of how much variability there is in f(X)
around its mean value E[f(X)]

var[f ]= E|(f (x)- E[f ()] | = E[f (x} |- E[F (x)F

* In particular, the variance of the variable x itself is:

var|x| = E[(X - E[X])z]



Covariance

* Covariance
* The extent to which X and y vary together

covlx, y] = Ep(ay[(x — E[x])(y — E[y])]
= Epeyxy] — E[XIE[Y]

4 N

Expectation with respect to
joint probability of X and y

- /




Entropy

* Amount of randomness in the random variable

H[p] = E[—log(p(x))]

Example
X 0 1 X 0 1
p(x) |05 |05 p(x) 0.1 1]0.9
H[x] = = 2xp(x)logp (x) H[x] = = 2Xxp(x) logp (x)
= —0.510g(0.5) — 0.510g(0.5) = —0.110og(0.1) — 0.910g(0.9)

= 0.693 = 0.325



Relative Entropy

* A measure of dissimilarity of two distributions p and Q
» Also called as kullback-Leibler (KL) divergence

KL[p|lql = [log (png] j p(x) log (Zgg) dx

* KL[p]|q] is nonnegative.
KL[p||q] = 0if and only if p(x) = q(x)
* In general, KL|p||q] # KL[q]|p]



Cross Entropy

* The cross-entropy between p and g over the same underlying set of
events measures the average number of bits needed to identify an
event drawn from the set if a coding scheme used for the set is

optimized for an estimated probability distribution q rather than the
true distribution p.

CE|p,q] = E,[—logq(x)] = — fp(x) log q(x) dx

* Relationship with entropy and KL divergence

CE|p,ql = Hlp] + KL[p|lq]



Categorical distribution

* A probability model for a categorical random variable
* The distribution is represented by a table
* An example is the probability distribution of a

skewed die
=
hﬂ

Probability 0.3
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1-of-K Representation

* The same probability as the table description can
be expressed as an equation by using 1-of-K
representation

Value 1-of-K representation Probability
v X=X, X2 Xy Xy a0 Xy 5) a=(a; a, az a, os)
1 (H) 1,0,0,0,0 Pr(X=1)=a,=0.3
2 (LY) 0,1,0,0,0 Pr(X=2)=a,=0.1
3 (2) 0,0,1,0,0 Pr(X=3)=0,=0.2
4 (R) 0,0,0,1,0 Pr(X=4)=0,=0.1
5 (&) 0,0,0,0,1 Pr(X=5)=a:=0.3
K

p(Ul(X) — p(le(X) = nakxv,k

k=1



Exercise 1.3

* When P(v|a) is given as follows, obtain P(“i” | a)

Value

1-of-K representation
sz(xv,li Xv,2' Xv,3' Xv,4' Xv,5)

1 (a) 1,0,0,0,0
2 (i) 0,1,0,0,0
3 (u) 0,0,1,0,0
4 (e) 0,0,0,1,0
5 (o) 0,0,0,0,1

a= (0.3, 0.2, 0.1, 0.1, 0.3)

21



Gaussian Distribution

* Defined by two parameters mean u and standard
deviation o (o? is variance)

. , 1 1 ,
(x|, 0%) = = exp —Z—Z(X—M)
27O o

It satisfies: 0 < N(x|u,0%), j N(x|u,0%)dx = 1
f(X) f(X)
0.6 0.6
04 ~ N(x[1,1) 04 N(x|—14)
0.2 0.2

0 0

-10 -5 0 5 10 -10 -5 0 5 10



Multivariate Gaussian Distribution

* For D-dimensional vector X, it is defined using a
mean vector g and a covariance matrix § :

N(x|u,S)

_ 1 L rem1ga }
\/(Zﬂ)DmeXp{ xX—pu)'Ss(x—p)

7

| S| denotes determinant of § }

Contour plot of an example of
a two dimensional Gaussian X,
distribution




Transformation of Continuous Random Variable

e Suppose X and Y are random variables and Y=f(X)

Py(x)Ax =~ Py(y)Ay
Y1 Py (y) = A—xP (x)
Yy NAy X

| Ay ‘

AX
: : ‘ dx
\ : "X Py(y) = ‘d_y Py (x)
P(X)

24



Transformation of Vector Variable

Y = f(X) Py (Y)AVy = Py (X)AVy
AV
Py(Y) = A—V’; Py (X)

The volume (area) ratio by a
linear transformation is equal

Py(¥1,¥2, ", Yn)
to the absolute value of v N

: 0(x1,%5,, XN)
determinant — L2 NPy (xq, %, 0, X))

(Y1, Y2, YN) X N

dx; O0xq d0x4

dy: 0y,  Oyy

ox, _

=110y, ' || Px(xq, %2, 0, xn)
dxy dxy
= oy, ol T—

Jacobian determinant Absolute value

of the inverse function
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Sampling From a Uniform Distribution

e Samples distribute uniformly over some region

Example:
Histogram of samples obtained from a uniform distribution over (0, 1)

10 samples 1000 samples
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X X
histplot(10,rand(1:10), histplot(10,rand(1:1000),

normalization=%f) normalization=%f)



Sampling From a Gaussian Distribution

Standard normal (Gaussian) distribution has a mean 0.0 and a
variance 1.0

100 samples 10000 samples
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Exercise 1.4

Assume p(x) and y = f(x) are given as follows

1 x?
x)=—exp|——|=N(x|0,1) x € (—o0, 00), =3x+4
p(x) Nex p( 2) (x]0,1) ( ) y

Then, q(y) becomes a Gaussian distribution N(y|E, 32). Obtain E

... Histogram of x Histogram of y
O 14001 1 | N
S 12007 ' g 1o 1
< O
< 10001 y=3x+4 §
5 a0 £ 1000- -
§ 6001 : o _
G— 4001 h‘k 8 2007 hﬂﬁ
(@) — ]
4 200 J o) ]

0 = 920 15 10 5 0 5 10 15 20

-20 15 10 -5 0 5 10 15 20

X y



Approximating Expectation with Sampling

When x4, X5, -+, x)y are samples independently
drawn from a distribution p(x)

N
1
E[f] = Z p(x)f(x) = Nz f(x,)  (xisdiscrete)
X n=1

N
1
E[f] = jp(x) f(x)dx = Nz f(x,) (xiscontinuous)
n=1



Advanced



Maximum Likelihood (ML) Method

* Assume that we have a set of samples D={Xy, X,, ... X}
drawn from a distribution p(x|@) with unknown
parameters 6, and we want to estimate @

* Maximum likelihood method estimates the parameters
by maximizing likelihood p(D|6)

0 =argmax p(D|9)=arg maxﬁ p(x. | 6)
0 0 i=1

Probability of the data set D is
decomposed to a product of samples
when they are drawn independently



Bernoulli Distribution

* Probability distribution of a binary random variable
which takes value 1 with probability u and value O
with probability 1-u

Is the result Head or Tail?

32



ML Estimation for Bernoulli Distribution

* Parameter 6 in this case is : u
* Training sample x; = 0 or 1

Taking log does not
change the problem and
makes the equation a bit

= arg max Iog(Hy —u)™ j easier
= arg max{Zx log( +Z (1-x,)log(1- )}
U
(leog +Zl x. )log(1- )j:O
_ _ n: the number of samples
= = ZX

i =argmax p(D | x)=arg maxf[yx (1-
u u iz



Categorical Distribution

* As a generalization of the Bernoulli Distribution,
lets consider a discrete random variable X that
takes K values

X 1 2 K
1-of-K <10,..0> | <01,..0> <0.0,.1>
<Xy, X, oo K>
p(X) My Ho Mk

Hy




ML for Categorical Distribution

* Parameter 0 in this caseis : g ={uy o ... g}

* Training sample x; is a vector of 1-of-K representation.
When x; represents k-th value, x; =1, and x; ;=0 for
J#*k

n K K
fi=argmax p(D|p)=argmax [ [] [ x* =argmax] ] ™
n n k=1

i=1 k=1 n
K m, is the number of the N
=1 <[ i ] occurrence of k-th value _
Z,Uk Constraint | 'm, = Z X;
k=1 where n is the number 1
of samples

This is a maximization problem with a constraint

:> Use the method of Lagrange multiplier



Method of Lagrange Multiplier

[ Maximize f(X) subject to g(X)=0 }

‘ Equivalent

: Maximize f(X)-Ag(X) -

with respect to X and /,
where 4 is a new parameter

- /




Solution

K K
fi=argmax | ] z™ =argmax > m, log(z)

B k=1 B k=1

Zﬂk =1

k=1

K K
m f=arg max{z m, logy, + /1(2 n —1)}

n k=1 k=1

m
[>ﬂk

_ M
N



Exercise 1.5

e Show the derivation process of obtaining 1, = M,
=
n

for the categorical distribution by maximizing

K K
L(w,2)= Z m, loggs + /1(2 Hy _lj
k=1 k=1

where A is the Lagrange multiplier.



