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Basics of probability distributions
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Probability Space

• Sample space (Ω)
• Set of all possible outcomes of an experiment

• Probability function (f(x))
• A function that maps each outcome to a probability

• Event (E)
• Subset of the sample space
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Random Variable

• A function that maps an outcome of an experiment 
to a value
• Notation: 

“P[X=x] = p” means “the probability of a random 
variable X takes a value x is p” 
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Example

Random 
Variable

1 2 3 4 5 6

X 1 2 3 4 5 6

Y 1 0 1 0 1 0

Z 0 0 1 1 1 1

X: The value of a die
Y: Whether the value of a die is odd number or not
Z: Whether the value of a die is larger than 2 or not



Joint Probability

• Probability that more than one events jointly occur
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Example

:X Dice 1

:Y Dice 2

:),( jYiXP == Probability that the value of X is i and 
the value of Y is j

Note: P(X=i, Y=j) = P(Y=j, X=i)



Conditional Probability

• Probability of an event given that another event 
has occurred

6

Example
Randomly picks up two balls sequentially from a box 

containing 4 blue and 6 green balls

𝑃("𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑎𝑙𝑙 𝑖𝑠 𝑏𝑙𝑢𝑒"|"𝑓𝑖𝑟𝑠𝑡 𝑏𝑎𝑙𝑙 𝑖𝑠 𝑔𝑒𝑒𝑛") =
4

9

𝑃("𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑎𝑙𝑙 𝑖𝑠 𝑏𝑙𝑢𝑒"|"𝑓𝑖𝑟𝑠𝑡 𝑏𝑎𝑙𝑙 𝑖𝑠 𝑏𝑙𝑢𝑒") =
3
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Two Principal Rules

• Sum rule
• Summing joint probability P(X,Y) for all possible values 

of Y gives probability of P(X)

• P(X) is called the marginal probability

• Product rule
• Product of probability P(X) and conditional probability 

P(Y|X) is equal to joint probability P(X,Y)
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Bayes’ Theorem

• From the product rule, we obtain:
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Independence

• If the joint distribution of two variables X and Y
factorizes into the product of the marginals, then X
and Y are said to be “independent”
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X and Y are 
independent

X and Y are not 
independent



Exercises 1.1,1.2

Joint probability of random variables 𝐴 and 𝐵 are 
given in the following table. According to the table, 
for example, 
𝑃 𝐴 = 0, 𝐵 = 0 = 0.2

1. Obtain 𝑃(𝐴 = 0)

2. Obtain 𝑃(𝐴 = 0|𝐵 = 0)
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𝑃(𝐴, 𝐵) B=0 B=1 B=2

A=0 0.2 0.1 0.1

A=1 0.3 0.2 0.1



Probability Densities

• If the probability of a real-valued variable x falling 
in the interval (x, x+δx) is given by p(x)δx when 
δx→0, p(x) is called the probability density of x
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x
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The Sum and The Product Rules For Continuous Variable
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Expectation

• Expectation of a function f(x) under a probability 
distribution p(x) is denoted by E[f]
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Mean and Variance

• Mean
• Synonym of the expectation E[f(x)]

• Variance
• A measure of how much variability there is in f(x) 

around its mean value E[f(x)]

• In particular, the variance of the variable x itself is:
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Covariance

• Covariance
• The extent to which x and y vary together
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cov 𝑥, 𝑦 ≡ 𝐸𝑝 𝑥,𝑦 𝑥 − 𝐸 𝑥 𝑦 − 𝐸 𝑦

= 𝐸𝑝 𝑥,𝑦 𝑥𝑦 − 𝐸 𝑥 𝐸 𝑦

Expectation with respect to 
joint probability of x and y



Entropy

• Amount of randomness in the random variable

16

𝐻 𝑝 = 𝐸 − log 𝑝 𝑥

x 0 1

p(x) 0.5 0.5

Example

𝐻 𝑥 = −σ𝑥 𝑝 𝑥 log 𝑝 𝑥

= −0.5 log( 0.5) − 0.5 log( 0.5)

= 0.693

x 0 1

p(x) 0.1 0.9

𝐻 𝑥 = −σ𝑥 𝑝 𝑥 log 𝑝 𝑥

= −0.1 log( 0.1) − 0.9 log( 0.9)

= 0.325



Relative Entropy

• A measure of dissimilarity of two distributions p and q
• Also called as kullback-Leibler (KL) divergence

• 𝐾𝐿 𝑝||𝑞 is nonnegative. 
𝐾𝐿 𝑝||𝑞 = 0 if and only if 𝑝 𝑥 = 𝑞 𝑥

• In general, 𝐾𝐿 𝑝||𝑞 ≠ 𝐾𝐿 𝑞||𝑝
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𝐾𝐿 𝑝||𝑞 = 𝐸𝑝 log
𝑝 𝑥

𝑞 𝑥
= −න𝑝 𝑥 log

𝑞 𝑥

𝑝 𝑥
𝑑𝑥



Cross Entropy

• The cross-entropy between p and q over the same underlying set of 
events measures the average number of bits needed to identify an 
event drawn from the set if a coding scheme used for the set is 
optimized for an estimated probability distribution q rather than the 
true distribution p.

• Relationship with entropy and KL divergence
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𝐶𝐸 𝑝, 𝑞 = 𝐸𝑝 − log 𝑞 𝑥 = −න𝑝 𝑥 log 𝑞 𝑥 𝑑𝑥

𝐶𝐸 𝑝, 𝑞 = 𝐻 𝑝 + 𝐾𝐿 𝑝||𝑞



Categorical distribution

• A probability model for a categorical random variable

• The distribution is represented by a table

• An example is the probability distribution of a 
skewed die 
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Number 1 2 3 4 5 6

Probability 0.3 0.1 0.1 0.1 0.3 0.1



1-of-K Representation

• The same probability as the table description can 
be expressed as an equation by using 1-of-K 
representation
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Value
v

1-of-K representation
Xv=(xv,1, xv,2, xv,3, xv,4, xv,5)

Probability
α=(α1, α2, α3, α4, α5)

1 （あ） 1,0,0,0,0 Pr(X=1)=α1=0.3

2 （い） 0,1,0,0,0 Pr(X=2)=α2=0.1

3 （う） 0,0,1,0,0 Pr(X=3)=α3=0.2

4 （え） 0,0,0,1,0 Pr(X=4)=α4=0.1

5 （お） 0,0,0,0,1 Pr(X=5)=α5=0.3

𝑝 𝑣|𝛂 = 𝑝 𝑋𝑣|𝛂 =ෑ

𝑘=1

𝐾

𝛼𝑘
𝑥𝑣,𝑘



Exercise 1.3

• When 𝑃 𝑣|𝛂 is given as follows, obtain P(“i”|α)
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Value
v

1-of-K representation
Xv=(xv,1, xv,2, xv,3, xv,4, xv,5)

1 （a） 1,0,0,0,0

2 （i） 0,1,0,0,0

3 （u） 0,0,1,0,0

4 （e） 0,0,0,1,0

5 （o） 0,0,0,0,1

𝑃 𝑣|𝛂 =ෑ

𝑘=1

5

𝛼𝑘
𝑥𝑣,𝑘

𝛂 = 0.3, 0.2, 0.1, 0.1, 0.3



Gaussian Distribution

• Defined by two parameters mean μ and standard 
deviation σ (σ2 is variance)
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𝑁 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎2
exp −

1

2𝜎2
𝑥 − 𝜇 2

It satisfies: 0 < 𝑁 𝑥|𝜇, 𝜎2 , න
−∞

∞

𝑁 𝑥|𝜇, 𝜎2 𝑑𝑥 = 1
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𝜇 = 1, 𝜎 = 1 𝜇 = −1, 𝜎 = 2

( )Xf ( )Xf

𝑋 𝑋

𝑁 𝑥|1,1 𝑁 𝑥| − 1,4



Multivariate Gaussian Distribution

• For D-dimensional vector x, it is defined using a 
mean vector 𝝁 and a covariance matrix 𝑺 :
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𝑁 𝒙|𝝁, 𝑺

=
1

2𝜋 𝐷|𝑺|
exp −

1

2
𝒙 − 𝝁 𝑇𝑺−1 𝒙 − 𝝁

|𝑺| denotes determinant of 𝑺

Contour plot of an example of 
a two dimensional Gaussian 
distribution

x1

x2



Transformation of Continuous Random Variable

• Suppose X and Y are random variables and Y=f(X)
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𝑃𝑋 𝑥 Δ𝑥 ≈ 𝑃𝑌 𝑦 Δ𝑦
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Transformation of Vector Variable
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The volume (area) ratio by a 
linear transformation is equal 
to the absolute value of 
determinant

𝑃𝑌 𝑌 ∆𝑉𝑌 = 𝑃𝑋 𝑋 ∆𝑉𝑋𝑌 = 𝑓 𝑋

𝑃𝑌 𝑌 =
∆𝑉𝑋
∆𝑉𝑌

𝑃𝑋 𝑋

𝑃𝑌 𝑦1, 𝑦2, ⋯ , 𝑦𝑁

=
𝜕 𝑥1, 𝑥2, ⋯ , 𝑥𝑁
𝜕 𝑦1, 𝑦2, ⋯ , 𝑦𝑁

𝑃𝑋 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

=

𝜕𝑥1
𝜕𝑦1

𝜕𝑥1
𝜕𝑦2

…
𝜕𝑥1
𝜕𝑦𝑁

𝜕𝑥2
𝜕𝑦1

⋱ ⋮

⋮ ⋱
𝜕𝑥𝑁
𝜕𝑦1

…
𝜕𝑥𝑁
𝜕𝑦𝑁

𝑃𝑋 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

Jacobian determinant 
of the inverse function

Absolute value



Sampling From a Uniform Distribution

• Samples distribute uniformly over some region
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histplot(10,rand(1:10), 
normalization=%f)

Example:
Histogram of samples obtained from a uniform distribution over (0, 1)

histplot(10,rand(1:1000), 
normalization=%f)

10 samples 1000 samples
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Sampling From a Gaussian Distribution

• Standard normal (Gaussian) distribution has a mean 0.0 and a 
variance 1.0
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Exercise 1.4

Assume 𝑝(𝑥) and 𝑦 = 𝑓 𝑥 are given as follows

28

𝑝(𝑥) =
1

2𝜋
exp −

𝑥2

2
= 𝑁 𝑥|0,1 𝑥 ∈ −∞, ∞ , 𝑦 = 3𝑥 + 4
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Then, 𝑞(𝑦) becomes a Gaussian distribution𝑁 𝑦|𝐸, 32 . Obtain 𝐸

𝑦 = 3𝑥 + 4



Approximating Expectation with Sampling

When 𝑥1, x2, ⋯ , 𝑥𝑁 are samples independently 
drawn from a distribution 𝑝 𝑥
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𝐸 𝑓 =

𝑥

𝑝(𝑥)𝑓 𝑥 ≈
1

𝑁


𝑛=1

𝑁

𝑓 𝑥𝑛

𝐸 𝑓 = න𝑝(𝑥) 𝑓 𝑥 𝑑𝑥 ≈
1

𝑁


𝑛=1

𝑁

𝑓 𝑥𝑛

(x is discrete)

(x is continuous)



Advanced
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Maximum Likelihood (ML) Method

• Assume that we have a set of samples D={x1, x2, … xn} 
drawn from a distribution p(x|θ) with unknown 
parameters θ, and we want to estimate θ

• Maximum likelihood method estimates the parameters 
by maximizing likelihood p(D|θ)
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Probability of the data set D is 
decomposed to a product of samples 
when they are drawn independently



Bernoulli Distribution

• Probability distribution of a binary random variable 
which takes value 1 with probability μ and value 0 
with probability 1-μ
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Is the result Head or Tail?

x 0 1

Bern(x) 1-μ μ

( ) ( ) xxxBern
−

−=
1

1 



ML Estimation for Bernoulli Distribution

• Parameter θ in this case is : μ

• Training sample 𝑥𝑖 = 0 𝑜𝑟 1
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Taking log does not 
change the problem and 
makes the equation a bit 
easier

n: the number of samples



Categorical Distribution

• As a generalization of the Bernoulli Distribution, 
lets consider a discrete random variable X that 
takes K values
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X 1 2 … K

1-of-K
<x1,x2,…,xK>

<1,0,..,0> <0,1,..,0> … <0,0,..,1>

p(X) μ1 μ2 … μK
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ML for Categorical Distribution

• Parameter θ in this case is : μ ={μ1, μ2, …, μK}

• Training sample 𝑥𝑖 is a vector of 1-of-K representation. 
When 𝑥𝑖 represents 𝑘-th value, 𝑥𝑖,𝑘=1, and 𝑥𝑖,𝑗=0 for 
𝑗 ≠ 𝑘
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mk is the number of the 
occurrence of k-th value,
where n is the number 
of samples 
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This is a maximization problem with a constraint

Constraint

Use the method of Lagrange multiplier



Method of Lagrange Multiplier
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Maximize f(X) subject to g(X)=0

Maximize f(X)-λg(X) 

with respect to X and λ, 
where λ is a new parameter

Equivalent



Solution
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Exercise 1.5

• Show the derivation process of obtaining  
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for the categorical distribution by maximizing

where λ is the Lagrange multiplier. 


