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Graphical Models

Integrations of probability and graph theories
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Role of Graphical Model

•Visualize the structure of probabilistic 
models and algorithms

•Describe algorithms in terms of graphical 
manipulations
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Conditional Probability

• Conditional probabilities are obtained from 
marginal/joint probabilities and the product rule
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Conditional Independence

Let A, B, and C be disjoint sets of random variables. When the 
following equation holds, we say that A is independent of B given C, 
and denote it as A╨B|C
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( ) ( )CAPCBAP |,| =

𝑃 𝐴, 𝐵|𝐶 = 𝑃 𝐴|𝐶 𝑃 𝐵|𝐶

∵ 𝑃 𝐴, 𝐵|𝐶 = 𝑃 𝐴|𝐵, 𝐶 𝑃 𝐵|𝐶

A╨B|C

B╨A|CA╨B|C

A╨B|C



Decomposition of Joint Probability

• By the product rule, arbitrary joint probability is decomposed to 
a product of conditional probabilities

• The contexts might be truncated if there exist conditional 
independence
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e.g. 𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃(𝐷|𝐶)



Composition of Joint Probability

• A joint probability is defined by a product of conditional 
probabilities where the contexts consist of variables whose 
probabilities are appearing in the left-hand side of them

• Proof
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𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃(𝐷|𝐶)

The product has the following form

ෑ

𝑖=1

𝑁

𝑃 𝑋𝑖|𝐶𝑖 , 𝐶𝑖 ⊆ {𝑋1, 𝑋2, ⋯ , 𝑋𝑖−1}

Xi does not appear to the conditional part of X1 ,…, Xi-1. Therefore, 
by thinking the summation of the following order, we have:
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(It is non-negative and satisfies the sum-to-one constraint)



Basic Graph Theories
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Graphs

• Undirected graph
• A graph defined by nodes and undirected arcs

• Directed graph
• A graph defined by nodes and directed arcs

• Directed Acyclic Graph: DAG
• Directed graph that does not contain a directed cycle
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Examples:

Undirected graph Directed graph
(Have a directed cycle)

Directed acyclic graph



Parent, Child, Ancestor, Descendant
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B

A

Node A is a 
parent of node B

Node B is a 
child of node A

B

A

C

D

Node B, C, and D are 
descendant of node A

Node A, B, and C are 
ancestors of node D



Directed Graph and Node Ordering
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A directed graph is a DAG 

There is an ordering of nodes where all arcs face the same 
direction (=There is a numbering of nodes where all arcs go from a 
lower numbered to higher numbered nodes)

Eq

１ 3

2

54 １ 32 54



Outline of the Proof

• Statement A:
• There is an ordering of nodes where all the arcs face the 

same direction

• Statement B:
• A graph does not contain a directed cycle
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Lemma 2.1

 If a graph does not contain a directed cycle, then there exist 
at least one node that has no incoming arc
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Bipartite

When nodes of a graph are separated to two groups and 
there is no arc inside the groups, it is called a bipartite
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Example of Bipartite:



Bayesian Network (BN)
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A joint probability model based on DAG and conditional probabilities



Definition of BN

BN is a graphical model where a node represent a random 
variable and arcs represent dependency of the variables
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𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃(𝐷|𝐵, 𝐶)



Representation of Repeated Structure
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X1 X2 X3 XT

V
V

Xt

T

A shorthand notation for a repeated structure is to surrounding the repeating unit 
and associating the number of repetition



𝑃 𝑥 = 𝐺𝑀𝑀 𝑥 =෍

𝑐=1

𝑁

𝑃 𝑐 𝑁 𝑥; 𝜇𝑐 , 𝜎𝑐
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Explicit Representation of Parameters

Small circles represent parameters
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𝑐

𝑥

 N 321 ,,=

 NS  321 ,,=

Example: 
BN representation 
of a GMM with an 
explicit description 
of its parameters



Graph Structure and Conditional Independence

• By investigating the graph structure, we can read 
relationships between random variables
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Tail-To-Tail
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In general, P(A,B) is not expressed as 
P(A)P(B). Therefor, A╨B|Φ does not hold. 
（Φ is an empty set）

P(A,B|C) is expressed as P(A|C)P(B|C). 
Therefore A╨B|C holds.
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Head-To-Tail
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In general, P(A,B) is not expressed as 
P(A)P(B). Therefor, A╨B|Φ does not hold.

P(A,B|C) is expressed as P(A|C)P(B|C). 
Therefore A╨B|C holds.



Head-To-Head
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In general, P(A,B) is expressed as P(A)P(B). 
Therefor, A╨B|Φ holds.

P(A,B|C) is not expressed as P(A|C)P(B|C). 
Therefore A╨B|C does not hold.



Blocking a Path

• For a Bayesian network, let A and B be a node, and C be a 
set of nodes that does not include A and B. We say a path 
from A to B is blocked when either of the followings holds
• On the path from A to B, there is a node in C and the connection 

of the arcs is tail-to-tail or head-to-tail

• At one of the nodes on the path from A to B, the connection of 
the arcs is head-to-head. In addition, the node and its all 
descendants are not included in C
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d-separation

For a Bayesian network, let A, B, and C be exclusive 
sets of nodes

• We say A is d-separated from B by C if all the paths 
starting from a node in A and ending at a node in B is 
blocked

• When A is d-separated from B by C, A╨B|C holds for 
the joint probability defined by the Bayesian network
(Pearl 1988)
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Example
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X1 X2 X6X4X3 X5

𝐴 𝐵𝐶

A╨B|C 

𝑃 𝐴, 𝐶, 𝐵 = 𝑃 𝐴 𝑃 𝐶 𝐴 𝑃 𝐵|𝐴, 𝐶 = 𝑃 𝐴 𝑃 𝐶 𝐴 𝑃 𝐵 𝐶
= 𝑃 𝑋2, 𝑋3 𝑃 𝑋4 𝑋2, 𝑋3 𝑃(𝑋5, 𝑋6|𝑋4)

When X4 is observed, all the paths from A to B is blocked at X4



Factor Graph
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A joint probability model based on a bipartite and factorization of a function



Factor Graph

• A bipartite graph where one side of nodes represent random 
variables and the others represent functions

• The arcs represent dependencies of the functions to the variables

• A factor graph defines a joint probability
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X1 X2 X3 X4

f1 f2 f3
Example:

Variable nodes

Factor nodes

( ) ( )s

iablesofsubsetss

sN XfXXXP 


=
var

21, 



Factor Graph Representation of Bayesian Network

Each conditional probability can be regarded as a factor
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Example
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Bayesian network

A CB D

P(A) P(B|A) P(C|A) P(D|A,C)

Factor graph



Exercise 2.1, 2.2

Q2.1) Is directed graph A a DAG? 
Q2.2) Is directed graph B a DAG?
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Graph A Graph B



Exercise 2.3, 2.4, 2.5

Q2.3) Does {X7, X8}╨ {X4} | {X1, X3} hold?

Q2.4) Does {X4, X5}╨ {X6} | {X3} hold?

Q2.5) Does {X4, X5}╨ {X6} | {X3, X8} hold?
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X2

X3

X4

X5

X1
X6

X7

X8

𝑃 𝑋7, 𝑋8|𝑋4, 𝑋1, 𝑋3 = 𝑃 𝑋7, 𝑋8|𝑋1, 𝑋3

𝑃 𝑋4, 𝑋5|𝑋3, 𝑋6 = 𝑃 𝑋4, 𝑋5|𝑋3

𝑃 𝑋4, 𝑋5|𝑋3, 𝑋6, 𝑋8 = 𝑃 𝑋4, 𝑋5|𝑋3, 𝑋8


