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Graphical Models

Integrations of probability and graph theories



Role of Graphical Model

* Visualize the structure of probabilistic
models and algorithms

* Describe algorithms in terms of graphical
manipulations



Conditional Probability

* Conditional probabilities are obtained from
marginal/joint probabilities and the product rule
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Conditional Independence

Let A, B, and C be disjoint sets of random variables. When the
following equation holds, we say that A is independent of B given C,
and denote it as A1B|C

P(A|B,C)=P(A|C)
AlB|C

AJLBlc |:> P(A,B|C) — P(A|C)P(B|C)

+ P(4,B|C) = P(A|B,C)P(B|C)

A'B|C <> B'A|C



Decomposition of Joint Probability

* By the product rule, arbitrary joint probability is decomposed to
a product of conditional probabilities

P(A,B,C,D)=P(A)P(B|AP(C|AB)P(D| A B,C)

* The contexts might be truncated if there exist conditional
independence

e.gs. P(4,B,C,D) = P(A)P(B|A)P(C|A)P(D|C)



Composition of Joint Probability

* Ajoint probability is defined by a product of conditional
probabilities where the contexts consist of variables whose
probabilities are appearing in the left-hand side of them

P(A,B,C,D) = P(A@)P(CM)P(D C)
* Proof

The product has the following form

N
[ [Pecico, e ey %)
=1

X; does not appear to the conditional part of X, ,..., X.;. Therefore,
by thinking the summation of the following order, we have:

2.0 S Jreico - Z > POl 1>ZP<XN|CN>—1

X2 XN =1 XN-1

(It is non-negative and satisfies the sum-to-one constraint)



Basic Graph Theories



Graphs

* Undirected graph
* A graph defined by nodes and undirected arcs

 Directed graph
* A graph defined by nodes and directed arcs

* Directed Acyclic Graph: DAG

* Directed graph that does not contain a directed cycle

Examples:
O——O (—0O (—0O
—o0 —0 —0
) @, @,

Directed graph Directed acyclic graph

Undirected graph .
(Have a directed cycle)



Parent, Child, Ancestor, Descendant

Node A, B, and C are
Node A is a ancestors of node D
parent of node B @

()

©
Node B is a @

child of node A
Node B, C, and D are
descendant of node A



Directed Graph and Node Ordering

A directed graph is a DAG
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There is an ordering of nodes where all arcs face the same
direction (=There is a numbering of nodes where all arcs go from a
lower numbered to higher numbered nodes)
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Outline of the Proof

* Statement A:

* There is an ordering of nodes where all the arcs face the
same direction

* Statement B:
* A graph does not contain a directed cycle

[ A J D> [ B } Trivial

T | [ A e
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Lemma 2.1

o If a graph does not contain a directed cycle, then there exist
at least one node that has no incoming arc

O

O

O
O
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Bipartite

When nodes of a graph are separated to two groups and
there is no arc inside the groups, it is called a bipartite

Example of Bipartite:

QO O

O O 0O O



Bayesian Network (BN)

A joint probability model based on DAG and conditional probabilities



Definition of BN

BN is a graphical model where a node represent a random
variable and arcs represent dependency of the variables

P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|B,C)

‘o
N



Representation of Repeated Structure

A shorthand notation for a repeated structure is to surrounding the repeating unit
and associating the number of repetition
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Explicit Representation of Parameters

Small circles represent parameters

Example:

BN representation @ M = {1, fty, - 1y }
®

of a GMM with an

explicit description
0 S= {61’62’63”°6N}
N
P(O) = GMM() = ) PN i, 02)
c=1

of its parameters




Graph Structure and Conditional Independence

* By investigating the graph structure, we can read
relationships between random variables

Q @ AlB|C 7
A
@ ALD|C,B
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Tail-To-Tail

In general, P(A,B) is not expressed as
P(A)P(B). Therefor, ALB|® does not hold.

T \@/ Tail (D is an empty set)
P(A,B)=> P(AB,C) ZP(A|C) (B|C)P(C)
(A c
P(A,B|C) is expressed as P(A|C)P(B|C).
(© Therefore ALB|C holds.

P(A.B|C)= P(A,B,C) P(A|C)P(B|C)P(C)

(A P(C) P(C)

=P(A[C)P(B|C)



Head-To-Tail

©

Head <~ Tail In general, P(A,B) is not expressed as

P(A)P(B). Therefor, A1B|® does not hold.

(A P(A,B)=> P(AB,C) ZP P(B|C)P(C|A)

@ P(A,B|C) is expressed as P(A|C)P(B|C).
Therefore ALB|C holds.

(A p(aB|c)= PAB.C)_(PCIAPA)P(EIC)

P(C) P(C)
-P(A|C)P(B|C)



Head-To-Head

In general, P(A,B) is expressed as P(A)P(B).

Head \@/ Head

Therefor, ALB|® holds.
@ P(A,B)=> P(AB,C)= ZP P(C|A,B)=P(A)P(B)

@ P(A,B|C) is not expressed as P(A|C)P(B|C).
Therefore A1B|C does not hold.

P(A,B,C) P(A)P(B)P(C|A B)

o PABIC=—5GT = pE)
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Blocking a Path

* For a Bayesian network, let A and B be a node, and C be a
set of nodes that does not include A and B. We say a path
from A to B is blocked when either of the followings holds

* On the path from A to B, there is a node in C and the connection
of the arcs is tail-to-tail or head-to-tail

* At one of the nodes on the path from A to B, the connection of
the arcs is head-to-head. In addition, the node and its all
descendants are not included in C




d-separation

For a Bayesian network, let A, B, and C be exclusive
sets of nodes

* We say A is d-separated from B by C if all the paths
starting from a node in A and ending at a node in B is
blocked

e When A is d-separated from B by C, ALB|C holds for
the joint probability defined by the Bayesian network

(Pearl 1988)
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Example

When X, is observed, all the paths from A to B is blocked at X,

= ALlB|C

P(A,C,B) = P(A)P(ClA)P(B|A, C) =P(A)P(C|A)P(B|C)
= P(XZ;X3)P(X4|X2:Xs)P(Xs:X6|X4)
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Factor Graph

A joint probability model based on a bipartite and factorization of a function



Factor Graph

* A bipartite graph where one side of nodes represent random
variables and the others represent functions

* The arcs represent dependencies of the functions to the variables
* A factor graph defines a joint probability

P(Xl’XZH'XN) = H fs (Xs)

sesubsets of variables

Example: f, f, f Factor nodes

@ @ @ ‘ Variable nodes
1 Koy Xy X X X,, X,

P(X ) = fl( )fz(xz)fs(xs’x4)



Factor Graph Representation of Bayesian Network

Each conditional probability can be regarded as a factor

Example

P(A) || P(B|IA) || P(C|A) || P(D|A,C)

> (
/ <>
P(A)P(B| AJP(C| AP(D|AC) ° e e D

Bayesian network Factor graph
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Exercise 2.1, 2.2

Q2.1) Is directed graph A a DAG?
Q2.2) Is directed graph B a DAG?

Graph A

Graph B
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Exercise 2.3, 2.4, 2.5

Q2.3) Does {X,, X {X,} | {X,, X5} hold?
P(X7JX8|X4-)X1;X3) = P(X7)X8|X1JX3)

Q2.4) Does {X,, X;}* {X.} | {X;} hold?
P(X4-)X5|X3)X6) — P(X4,X5|X3)

Q2.5) Does {X,, X} {Xc} | {X5, Xg} hold?
P(X4, X5|X3, X6, Xg) = P(X4, Xs5|X3, Xg)




