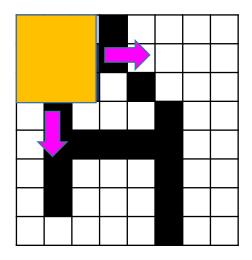
Speech and Language Processing Lecture 4 Neural network based speech recognition and synthesis

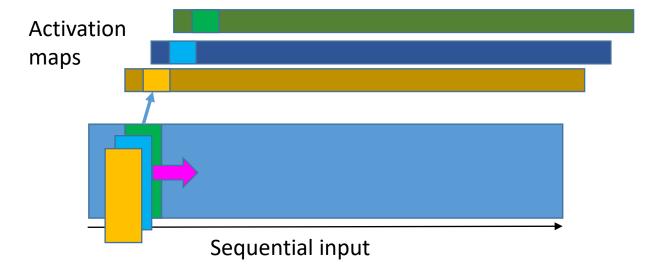
Information and Communications Engineering Course Takahiro Shinozaki Manabu Okumura

2024/10/1

Some Basic Functional Elements

1D-CNN



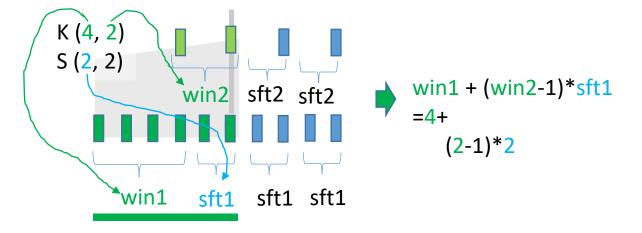


2D-CNN

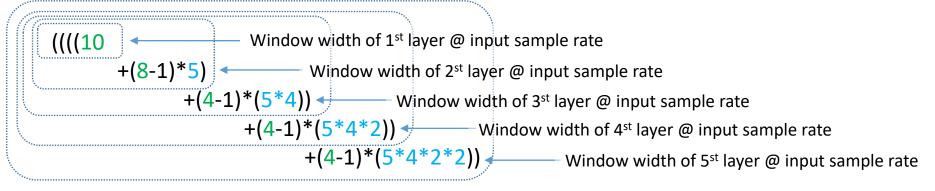
1D-CNN

Receptive Field Length of Cascaded 1D Convolution

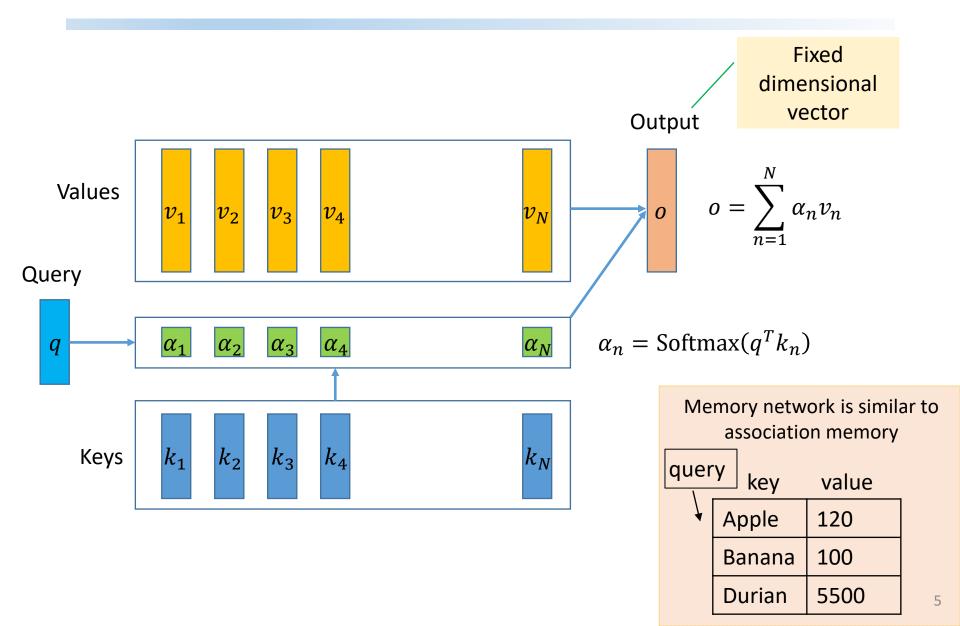
 1^{st} convolution: Kernel (window) Size = 4, Stride (shift) = 2. 2^{nd} convolution: Kernel (window) Size = 2, Stride (shift) = 2.



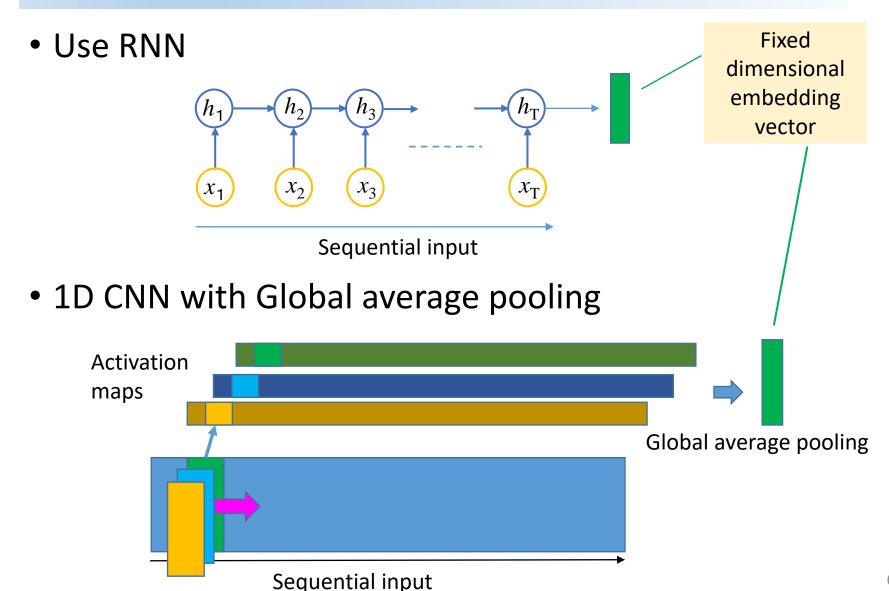
K (10, 8, 4, 4, 4), S (5, 4, 2, 2, 2)



Memory Network

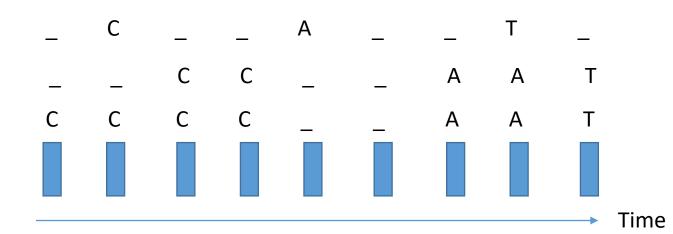


Fixed-Dimensional Embeddings of Sequences



Connectionist Temporal Classification (CTC) Loss

- Assume:
 - We have frame-wise character (or word etc.) prediction for a sequence of time frames
 - A blank label is included as a special character
 - Reference text is a sequence of characters whose length is smaller than the frame sequence
- Matching of the prediction and the reference
 - Form output by collapsing repeated characters and removing blank character from the predicted sequence



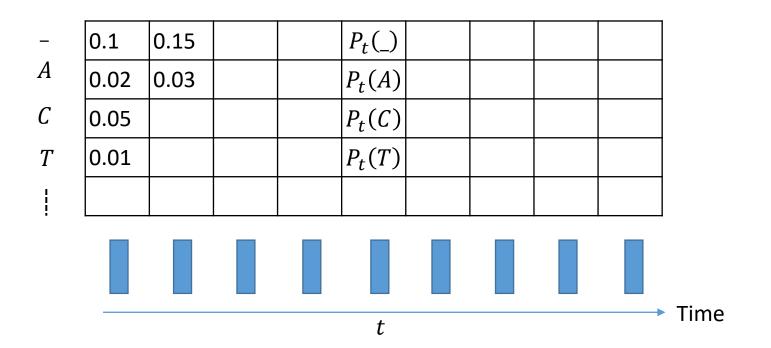
A. Graves+, "Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks," ICML, 2006https://www.cs.toronto.edu/~graves/icml_2006.pdf

Reference: C A T

Probability of Predicted Sequence

• Probability of Predicted Sequence is a product of frame-wise prediction probabilities

 $P(_ CC_AAT) = P_1(_)P_2(_)P_3(C)P_4(C)P_5(_)P_6(_)P_7(A)P_8(A)P_9(T)$



Probability of Character Sequence

 Probability of character sequence (like the reference) is a sum of probabilities of all the matching predicted sequences

 $P(CAT) = P(_ CC_AAT) + P(C CC_AAT) \cdots$

$$= \sum_{\pi \in \mathcal{B}^{-1}(CAT)} P(\pi) = \sum_{\pi \in \mathcal{B}^{-1}(CAT)} \prod_{t} P_t(\pi_t)$$

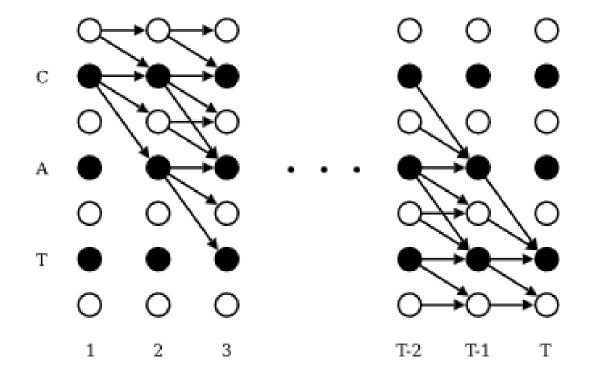
 \mathcal{B} : The contraction function of CTC.

e.g. $\mathcal{B}(_ CC_AAT) = \mathcal{B}(CCC_AAT) = CAT$

 \mathcal{B}^{-1} : Inverse of the contraction function (one-to-many mapping)

Efficient Probability Evaluation

The probability of the character sequence is efficiently evaluated by the forward algorithm



Black circles represent labels, and white circles represent blanks

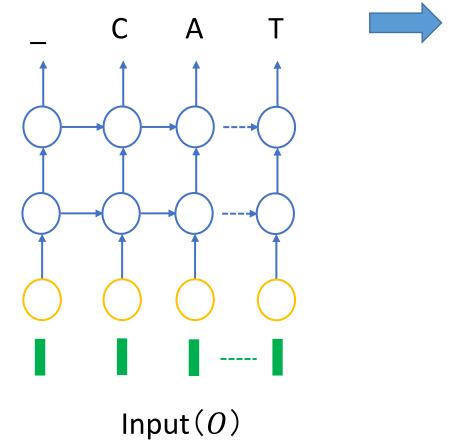
CTC Loss

CTC loss
$$\mathcal{L}(S) = -log P(S) = -log \sum_{\pi \in \mathcal{B}^{-1}(S)} \prod_{t} P_t(\pi_t)$$

It's gradient
$$\frac{\partial}{\partial P_u(c)}\mathcal{L}(S) = -\frac{\sum_{\pi \in \mathcal{B}^{-1}(S), \pi_u = c} \prod_{t \neq u} P_t(\pi_t)}{\sum_{\pi \in \mathcal{B}^{-1}(S)} \prod_t P_t(\pi_t)}$$

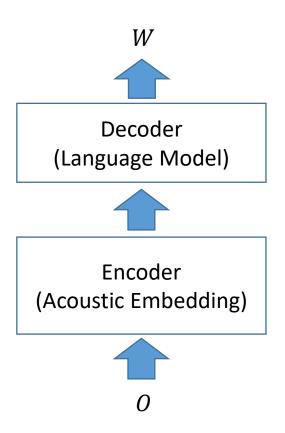
Neural Network Based Speech Recognition

RNN+CTC



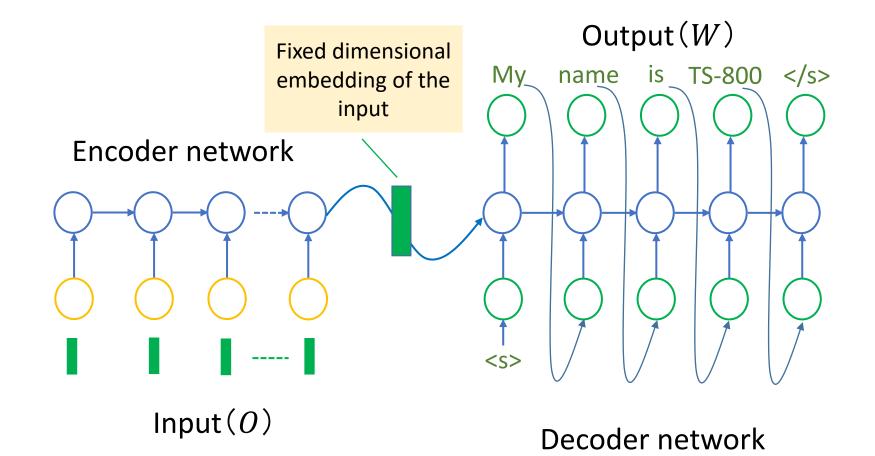
Encoder-Decoder Networks

Language model models a probability of a sentence P(W). By conditioning it with an acoustic input O, we get the discriminative modeling based speech recognizer P(W|O).

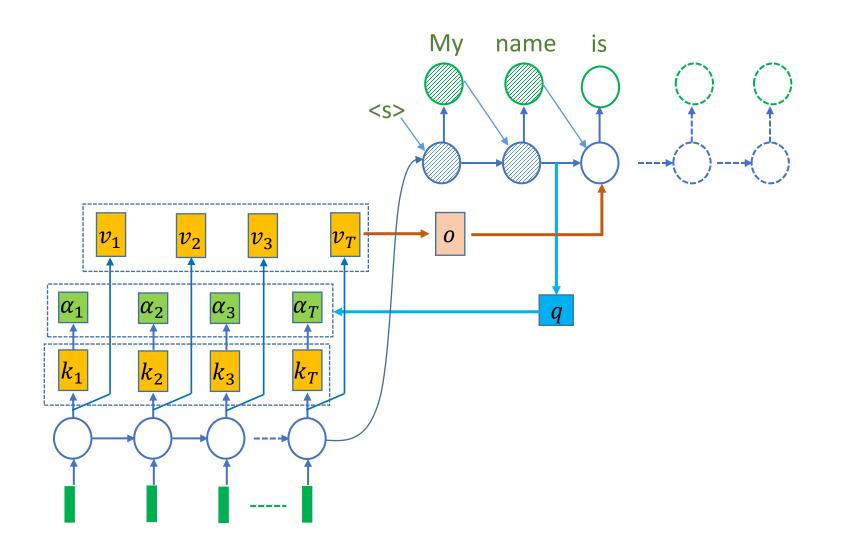


Encoder-Decoder Network

Directly models P(W|O)



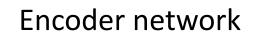
Attention Encoder-Decoder

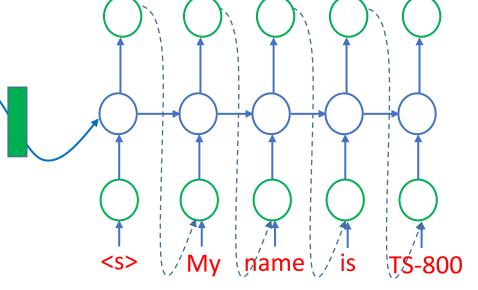


Teacher Forcing

When training the encoder-decoder network, teacher forcing uses reference words in the decoder input instead of the predicted words

- Advantage: the learning becomes stable
- Disadvantage: inconsistency arise between training and testing phase





name

My

Output(W)

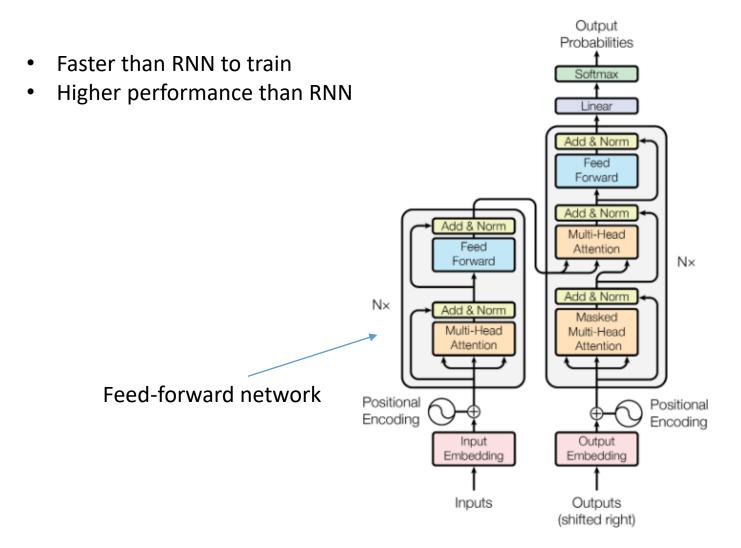
is TS-800

</s>

Input(0)

Decoder network

Transformer

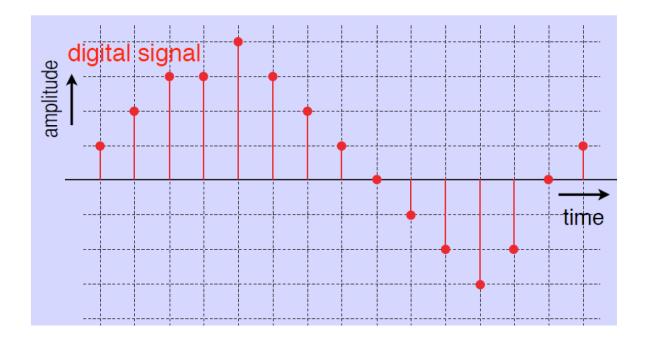


Neural Network Based Speech Synthesis

WAVENET

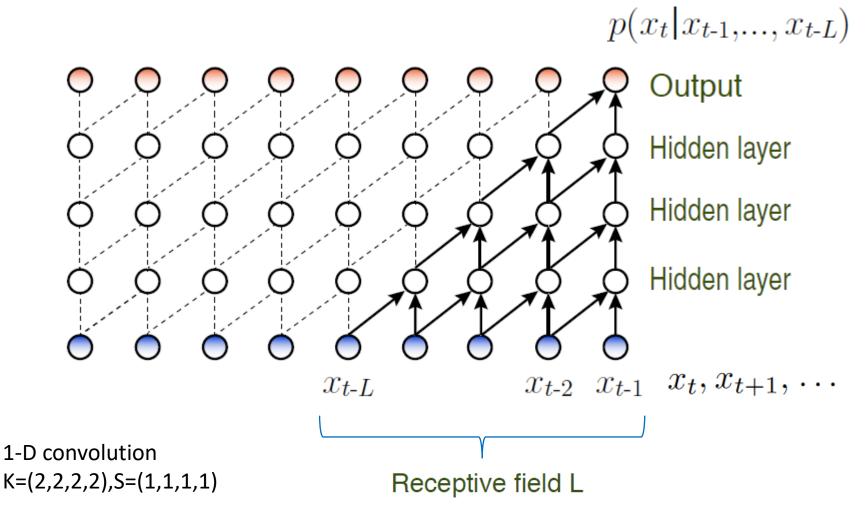
• A DNN based generative raw waveform model [van den Oord, et al., 2016]

$$p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1})$$



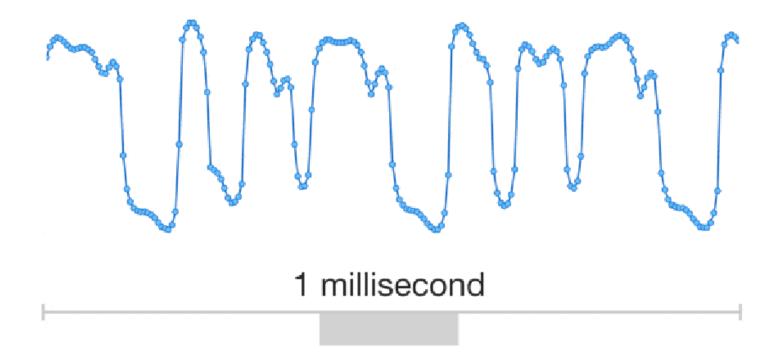
Causal Convolution

The prediction emitted at time step t is independent of future time steps $t, t + 1, \cdots$



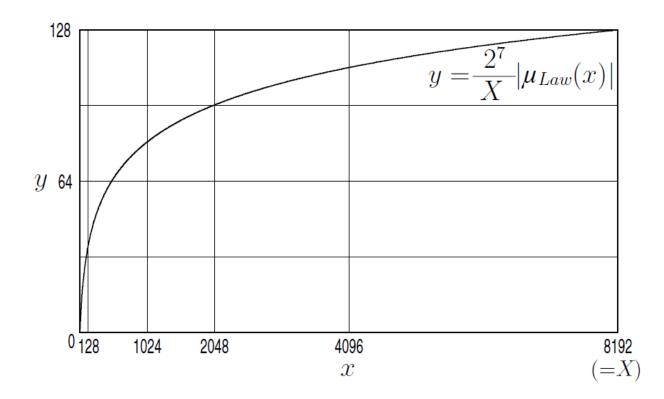
Categorical Prediction of Amplitude

• Discrete prediction by the softmax function is used, as it is found to work better than continuous regression

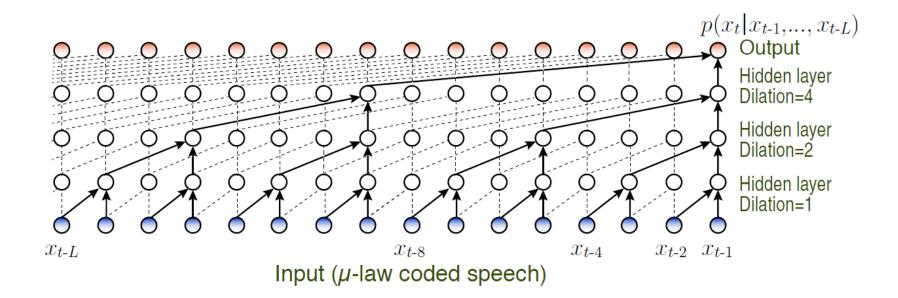


μ -Law Coding

$$\mu_{Law}(x) = \operatorname{sign}(x) X \frac{\log(1 + \mu |x|/X)}{\log(1 + \mu)} , \quad |x| \le X$$



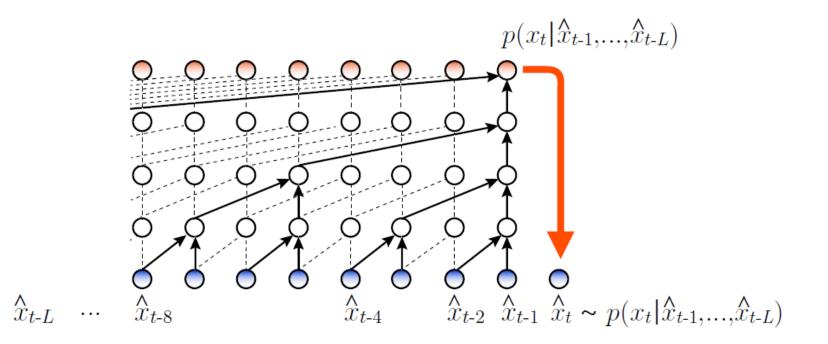
Dilated Causal Convolution



1-D convolution K=(2,2,2,2),S=(2,2,2,2)

Signal Generation

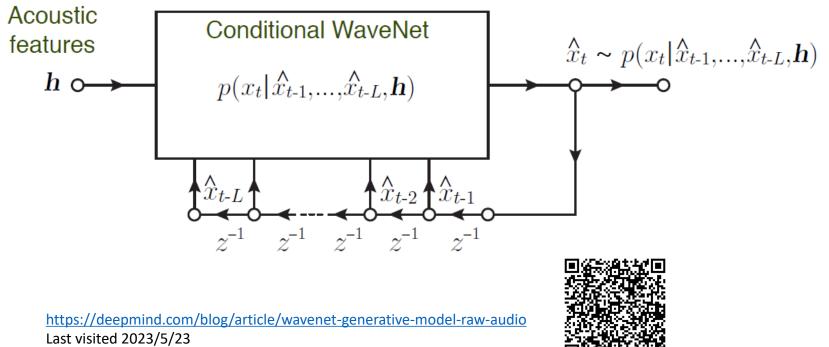
Random sampling from estimated distribution



Conditional WavNet

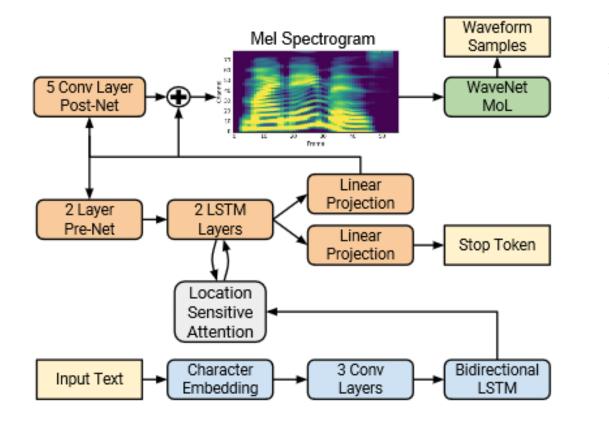
$$\ln p(\mathbf{x} \mid \mathbf{h}) \approx \sum_{t=1}^{T} \ln p(x_t \mid x_{t-1}, \dots, x_{t-L}, \mathbf{h})$$

- Auxiliary input h: F0, mel spectrum, spectrogram, etc.
- Receptive field L: several hundreds milliseconds



Tacotron 2

A neural network architecture for speech synthesis directly from text



*The figure is cited from J. Shen et al., "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram predictions", ICASSP 2018.

cations/tacotron/index.html

https://google.github.io/tacotron/publications/tacotron/index.html Last visited 2023/5/23

Exercise (Q4.1, Q4.2)

Q4.1

What is the receptive field length of 1-D convolution when K=(2,2,2,2,2),S=(1,1,1,1,1)?

Q4.2

What is the receptive field length of 1-D convolution when K=(2,2,2,2,2),S=(2,2,2,2)?