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Some Basic Functional Elements
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Receptive Field Length of Cascaded 1D Convolution
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Memory Network
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Fixed-Dimensional Embeddings of Sequences
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Connectionist Temporal Classification (CTC) Loss

* Assume:
* We have frame-wise character (or word etc.) prediction for a sequence of time frames
* Ablank label is included as a special character
* Reference text is a sequence of characters whose length is smaller than the frame sequence

* Matching of the prediction and the reference

* Form output by collapsing repeated characters and removing blank character from the
predicted sequence

Reference: CAT
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A. Graves+, “Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks,” ICML, 2006https://www.cs.toronto.edu/~graves/icml_2006.pdf



Probability of Predicted Sequence

* Probability of Predicted Sequence is a product of frame-wise prediction probabilities

P _CC__AAT) = Pi()P,()P3(C)P,(C)Ps(L)Ps(L)P;(A)Pg(A)Po(T)

- |01 |0.15 P.()
A 10.02 |0.03 P,(A)
C |o.os P,(C)
T [0.01 P,(T)

t

» Time



Probability of Character Sequence

* Probability of character sequence (like the reference) is
a sum of probabilities of all the matching predicted
sequences

P(CAT)=P(_ _CC__AAT)+P(C CCC__AAT) -
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B: The contraction function of CTC.
egB( _CC__AAT)=B(C CCC__AAT)=CAT

B~1: Inverse of the contraction function (one-to-many mapping)



Efficient Probability Evaluation

The probability of the character sequence is efficiently evaluated by the forward algorithm
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Black circles represent labels, and white circles represent blanks

Figure is cited from A. Graves+ 2006

10



CTC Loss

CTC loss L(S) = —logP(S) = —log Z Hpt(”t)
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Neural Network Based
Speech Recognition



RNN+CTC

o Cc AT ) AT



Encoder-Decoder Networks

Language model models a probability of a sentence P(IW).
By conditioning it with an acoustic input O, we get the discriminative
modeling based speech recognizer P(W|0).

-

Decoder
(Language Model)

»

Encoder
(Acoustic Embedding)

%

14



Encoder-Decoder Network

Directly models P(IWW|0)

Fixed dimensional
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input
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Attention Encoder-Decoder
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Teacher Forcing

When training the encoder-decoder network, teacher forcing uses reference
words in the decoder input instead of the predicted words

* Advantage: the learning becomes stable
* Disadvantage: inconsistency arise OUtpUt (W)
between training and testing phase My name is TS-800 </s>
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Transformer

Qutput
Probabilities

* Faster than RNN to train
* Higher performance than RNN
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A. Vaswani+, Attention Is All You Need, 2017
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Neural Network Based
Speech Synthesis



WAVENET

A DNN based generative raw waveform model
[van den Oord, et al., 2016]
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Causal Convolution

The prediction emitted at time step t is independent of future time
stepst,t+1,---
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Categorical Prediction of Amplitude

* Discrete prediction by the softmax function is used, as
it is found to work better than continuous regression
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The figure is from DeepMind web page
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n-Law Coding
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Dilated Causal Convolution
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Signal Generation

 Random sampling from estimated distribution
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Conditional WavNet
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m Auxiliary input h: FO, mel spectrum, spectrogram, etc.
B Receptive field L: several hundreds milliseconds
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https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
Last visited 2023/5/23



https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

Tacotron 2

A neural network architecture for speech synthesis directly from text
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https://google.github.io/tacotron/publications/tacotron/index.html
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*The figure is cited from J.
Shen et al., “Natural TTS
Synthesis by Conditioning
WaveNet on Mel
Spectrogram predictions”,
ICASSP 2018.



https://google.github.io/tacotron/publications/tacotron/index.html

Exercise (Q4.1, Q4.2)

Q4.1

What is the receptive field length of 1-D convolution
when K=(2,2,2,2,2),5=(1,1,1,1,1)?

Q4.2

What is the receptive field length of 1-D convolution
when K=(2,2,2,2,2),5=(2,2,2,2,2)7



