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Reinforcement Learning

2

Dilaudid, CC BY-SA 3.0, via Wikimedia Commons

[3] N. Bhonker+, "Playing SNES in the Retro Learning Environment," arXiv, 2018

Figure is cited from [3]

[1] V. Mnih+, "Playing Atari with Deep Reinforcement Learning," NIPS Deep Learning Workshop, 2013

[2] D. Silver+, "Mastering the game of Go without human knowledge," Nature 2017

In some applications, AI has become stronger than human by reinforcement 
learning breaking away from supervised learning

Figure is cited from [1]

https://commons.wikimedia.org/wiki/File:Go_board_part.jpg
http://creativecommons.org/licenses/by-sa/3.0/


Dialogue System Training

• By using RL, the agent can learn rational behavior flexibly
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User’s goal

User’s action

Dialogue state

Agent’s action

reward

[2] J. Williams+, "Factored Partially Observable Markov Decision Processes for Dialogue Management,"
Proc. Knowledge and Reasoning in Practical Dialog Systems, 2005

[1] E. Levin+, “A Stochastic Model of Computer-Human Interaction For Learning Dialogue Strategies,” Eurospeech, 1997

Figure is from [2]



Human Language Acquisition

[1] B. F. Skinner. "Verbal behavior," New York: Appleton-Century-Crofts, 1957.

Silly rabbit, CC BY 3.0, via 
Wikimedia Commons

Language acquisition could be explained by mechanisms of operant conditioning (OC)

B.F. Skinner Reinforcement 
Learning
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Difference From Supervised Learning
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Supervised Learning Reinforcement Learning

At each time step, the correct action 
to take is explicitly provided as 
labeled data, and the robot (agent) 
learns based on these pre-taught 
patterns of behavior.

The robot (agent) interacts with the 
environment and receives rewards. 
It learns autonomously through 
experience, developing a strategy 
(policy) to maximize the cumulative 
reward over time.

Demo video of automatic game playing (last visited 2024/10/2)
https://www.bing.com/videos/riverview/relatedvideo?q=Playing%20Atari%20with%20Deep%20Reinforcement%20Learning&
mid=8680C3FA93A1F93F02FF8680C3FA93A1F93F02FF&ajaxhist=0



Agents in Reinforcement Learning
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I want an 
apple

𝑆

A

Environmental 
state

Action

At each time frame, agents observe 
the environmental state and perform 
an action. An agent's behavior can be 
described by a policy function 𝜋 that 
takes the environmental state and 
returns an action. 

The policy function can be either stochastic, 
𝜋(𝑎|𝑠), where actions are chosen based on 
a probability distribution, or deterministic, 
where the action is directly determined by 
the state, a=𝜋(𝑠).



Agent-Environment Interaction

• A policy 𝜋 defines the behavior of an agent

• The ultimate goal of reinforcement learning is for the agent to 
discover the optimal policy 𝜋 that maximizes cumulative 
rewards through interaction with the environment

7

𝑆1 𝑆2 𝑆3𝑆0

𝐴0 𝐴1 𝐴2 𝐴3

𝑅0 𝑅1 𝑅2 𝑅3

𝜋 𝑎|𝑠

action

reward

state



Basic Formulations and 
Value-Functions
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Markov Process (MP)

A Markov Process is a tuple 𝑆, 𝐼, 𝑇
• 𝑆: set of states

• I: initial distribution 𝐼 𝑠 = 𝑃 𝑆0 = 𝑠

• 𝑇: state transition 𝑇𝑡 𝑠, 𝑠′ = 𝑃 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠
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When the state is discrete 𝑆 = 1,2,⋯ ,𝑁 , and the transition is time invariant 𝑇𝑡 𝑠, 𝑠′ = 𝑇𝑡′ 𝑠, 𝑠′ = 𝑇 𝑠, 𝑠′ , we can 
represent the initial distribution I  by a 𝑁-dimensional vector whose 𝑠 -th element is 𝐼 𝑠 and the state transition 𝑇 by a 
𝑁 × 𝑁 matrix whose 𝑠, 𝑠′ element is 𝑇 𝑠, 𝑠′ . In the followings, we assume the transition is time invariant.

𝑆𝑡 is a random variable that represent the state at time 𝑡. The probability of the next 
state is solely determined by the current state.
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0.4

0.6

1.0

𝑆 = 1,2,3

𝑇 =
0.1 0.7 0.2
0.4 0 0.6
0 0 1.0

Example:

𝐼 = 1.0 0.0 0.0 𝑇



BN representation and Markov Property 
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𝑆1 𝑆2 𝑆3𝑆0

Head-to-tail

{𝑆𝑡+1}╨{𝑆0, 𝑆1, ⋯, 𝑆𝑡−1}|{𝑆𝑡}

→d-separation

𝑃 𝑆𝑡+1|𝑆0, 𝑆1, 𝑆2, ⋯ , 𝑆𝑡 = 𝑃 𝑆𝑡+1|𝑆𝑡

𝑆4

For arbitral 𝑡, 

Because the probability of the next state is determined by the current state, 
Bayesian network (BN) representation has a linear structure.



Exercise 5.1

Obtain 𝑃 𝑆0 = 1, 𝑆1 = 2, 𝑆2 = 3 with the following 
Markov Process
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1
2

3

0.1

0.7

0.2

0.4
0.6

1.0

𝑆 = 1,2,3

𝑇 =
0.1 0.7 0.2
0.4 0 0.6
0 0 1.0

𝐼 = 1.0 0.0 0.0 𝑇

Hint: 

𝑃 𝑆0 = 1, 𝑆1 = 2, 𝑆2 = 3

= 𝑃 𝑆0 = 1 𝑃 𝑆1 = 2|𝑆0 = 1 𝑃 𝑆2 = 3|𝑆0 = 1, 𝑆1 = 2

= 𝑃 𝑆0 = 1 𝑃 𝑆1 = 2|𝑆0 = 1 𝑃 𝑆2 = 3|𝑆1 = 2



Probability of State in Sequence
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Let 𝐮 0 = 𝐼, 𝐮 𝑡 =

𝑃 𝑆𝑡 = 1

𝑃 𝑆𝑡 = 2
⋮

𝑃 𝑆𝑡 = 𝑁

𝑃 𝑆0, 𝑆1, ⋯ , 𝑆𝑡 = 𝑃 𝑆0 𝑃 𝑆1|𝑆0 𝑃 𝑆2|𝑆0, 𝑆1 ⋯𝑃 𝑆𝑡|𝑆0, 𝑆1,⋯ , 𝑆𝑡−1 = 𝑃 𝑆0 𝑃 𝑆1|𝑆0 ⋯𝑃 𝑆𝑡|𝑆𝑡−1

𝑆0 𝑆1 𝑆2 𝑆3 𝑆𝑡

𝐮 𝑡 =

𝑃 𝑆𝑡 = 1

𝑃 𝑆𝑡 = 2
⋮

𝑃 𝑆𝑡 = 𝑁

𝐮 𝑡 = 𝑇𝑇 𝑡𝐮 0

𝑆𝑡−1

𝐮 𝑡 = 𝑇𝑇𝐮 𝑡 − 1 = 𝑇𝑇 𝑘𝐮 𝑡 − 𝑘 = 𝑇𝑘
𝑇
𝐮 𝑡 − 𝑘 = 𝑇𝑡 𝑇𝐮 0

Then because 𝑃 𝑆𝑡 = σ𝑆𝑡−1
𝑃 𝑆𝑡−1, 𝑆𝑡 = σ𝑆𝑡−1

𝑃 𝑆𝑡|𝑆𝑡−1 𝑃 𝑆𝑡−1 , we have:

𝑇𝑠𝑠′
𝑘 = 𝑃 𝑆𝑡+𝑘 = 𝑠′|𝑆𝑡 = 𝑠

𝑇𝑘 is a transition matrix from the current to k-th future.



Markov Reward Process (MRP)

A Markov Reward Process is a tuple 𝑆, 𝐼, 𝑇, 𝑅, 𝛾
• 𝑆: set of states

• I: initial distribution 𝐼 𝑠 = 𝑃 𝑆0 = 𝑠

• 𝑇: state transition 𝑇 𝑠, 𝑠′ = 𝑃 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠

• 𝑅: reward distribution 𝑅 𝑠 = 𝑃 𝑅𝑡 = 𝑟|𝑆𝑡 = 𝑠

• 𝛾: discount factor 𝛾 ∈ 0, 1
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1
2

3

0.1

0.7

0.2

0.4

0.6

1.0

𝑆 = 1,2,3

𝑇 =
0.1 0.7 0.2
0.4 0 0.6
0 0 1.0

𝑅 1

𝑅 2Example:

(We assume 𝑅 is time invariant 𝑅 𝑠 = 𝑃 𝑅𝑡 = 𝑟|𝑆𝑡 = 𝑠 = 𝑃 𝑅𝑢|𝑆𝑢 = 𝑠 )

𝐼 = 1.0 0.0 0.0

𝑅 3



Bayesian Network (BN) Representation
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𝑆1 𝑆2 𝑆3𝑆0

𝑅0 𝑅1 𝑅2 𝑅3



Reward Function

• A reward function is an expectation of reward given a state

• It is independent of time 𝑡 and is a function of state 𝑠
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ҧ𝑟 𝑠 = ഥ𝑟𝑡 𝑠 = 𝐸 𝑅𝑡 = 𝑟|𝑆𝑡 = 𝑠 =෍

𝑟

𝑟 𝑃 𝑅𝑡 = 𝑟|𝑆𝑡 = 𝑠

𝑆1 𝑆2 𝑆3𝑆0

𝑅0 𝑅1 𝑅2 𝑅3



Example Question

Obtain 𝑃 𝑆0 = 1, 𝑅0 = 0, 𝑆1 = 2, 𝑅1 = 0, 𝑆2 = 3, 𝑅2 = 1.0 with 
the following Markov Reward Process
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𝑆 = 1,2,3

𝑇 =
0.1 0.7 0.2
0.4 0 0.6
0 0 1.0

𝐼 = 1.0 0.0 0.0
1

2

3

0.1

0.7

0.2

0.4

0.6

1.0

𝑅 1

𝑅 2

𝑅 3

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 1 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 1 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 2 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 2 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 3 = 0.7, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 3 = 0.3

𝛾 = 0.8



Answer
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𝑃 𝑆0 = 1, 𝑅0 = 0, 𝑆1 = 2, 𝑅1 = 0, 𝑆2 = 3, 𝑅2 = 1.0

= 𝑃 𝑆0 = 1 𝑃 𝑅0 = 0|𝑆0 = 1 𝑃 𝑆1 = 2|𝑆0 = 1, 𝑅0 = 0 𝑃 𝑅1 = 0|𝑆0 = 1, 𝑅0 = 0, 𝑆1 = 2

𝑃 𝑆2 = 3|𝑆0 = 1, 𝑅0 = 0, 𝑆1 = 2, 𝑅1 = 0 𝑃 𝑅2 = 1.0|𝑆0 = 1, 𝑅0 = 0, 𝑆1 = 2, 𝑅1 = 0, 𝑆2 = 3

= 𝑃 𝑆0 = 1 𝑃 𝑅0 = 0|𝑆0 = 1 𝑃 𝑆1 = 2|𝑆0 = 1 𝑃 𝑅1 = 0|𝑆1 = 2 𝑃 𝑆2 = 3|𝑆1 = 2 𝑃 𝑅2 = 1.0|𝑆2 = 3

= 1.0 × 0.2 × 0.7 × 0.2 × 0.6 × 0.3

= 0.00504

𝑆1 𝑆2𝑆0

𝑅0 𝑅1 𝑅2

1
2

3

0.1

0.7

0.2

0.4

0.6

1.0

𝑅 1

𝑅 2

𝑅 3

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 1 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 1 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 2 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 2 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 3 = 0.7, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 3 = 0.3



Return

For a trajectory (𝑆𝑡 = 𝑠𝑡 , 𝑅𝑡 = 𝑟𝑡, 𝑆𝑡+1 = 𝑠𝑡+1, 𝑅𝑡+1 = 𝑟𝑡+1, ⋯) 
starting from time-step 𝑡, return 𝐺𝑡 is a sum of discounted rewards
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𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 +⋯ = ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘

𝑆1 𝑆2 𝑆3𝑆0

𝑅0 𝑅1 𝑅2 𝑅3

𝐺2e.g.



State-Value Function

State-value function 𝑣 𝑠 is the expected return starting from state 𝑠
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𝑣𝑡 𝑠 = ෍

𝑟𝑡,𝑠𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑟𝑡 , 𝑠𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑠𝑡 = 𝑠 𝐺𝑡 = 𝐸 𝐺𝑡|𝑆𝑡 = 𝑠

𝑣 𝑠 = 𝑣𝑡 𝑠 for any 𝑡

𝑣2 𝑠 = 𝐸 𝐺2|𝑆2 = 𝑠

𝑆1 𝑆2 𝑆3𝑆0

𝑅0 𝑅1 𝑅2 𝑅3

𝐺2

e.g.



Markov Decision Process (MDP) and Policy

• A Markov Decision Process is a tuple 𝑆, 𝐴, 𝐼, 𝑇, 𝑅, 𝛾
• 𝑆: set of states

• 𝐴: set of actions (action space)

• I: initial distribution 𝐼 𝑠 = 𝑃 𝑆0 = 𝑠

• 𝑇: state transition 𝑇 𝑎, 𝑠, 𝑠′ = 𝑃 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• 𝑅: reward distribution 𝑅 𝑎, 𝑠 = 𝑃 𝑅𝑡 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• 𝛾: discount factor 𝛾 ∈ 0, 1

• A policy 𝜋 is a distribution over actions given states
• 𝜋 𝑎|𝑠 = 𝑃 𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠

20



Example
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1
2

3

a=1:0.1

a=1:0.7

a=1:0.2

a=1:0.4

a=1:0.6

a=1:1.0

𝑆 = 1,2,3

𝑇𝑎=1 =
0.1 0.7 0.2
0.4 0 0.6
0 0 1.0

𝐴 = 1,2

𝑇𝑎=2 =
0.4 0 0.6
0 1.0 0
0 0 1.0

a=2:0.4

a=2:0.6

a=2:1.0

a=2:1.0

𝑆1 𝑆2 𝑆3𝑆0

𝐴0 𝐴1 𝐴2 𝐴3

𝑅0 𝑅1 𝑅2 𝑅3

𝐼 = 1.0 0.0 0.0

𝑅 1,2

𝑅 2,2

𝑅 1,3

𝑅 2,3

𝑅 1,1

𝑅 2,1

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 1, 𝑎 = 1 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 1, 𝑎 = 1 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 2, 𝑎 = 1 = 0.3, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 2, 𝑎 = 1 = 0.7

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 3, 𝑎 = 1 = 0.3, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 3, 𝑎 = 1 = 0.7

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 1, 𝑎 = 2 = 0.6, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 1, 𝑎 = 2 = 0.4

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 2, 𝑎 = 2 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 2, 𝑎 = 2 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 3, 𝑎 = 2 = 0.7, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 3, 𝑎 = 2 = 0.3

𝑅 1,1

𝑅 2,1

𝑅 1,2

𝑅 2,2

𝑅 1,3

𝑅 2,3



Policy and Environment

• A policy 𝜋 defines the behavior of an agent

• The goal of the agent learning is to find optimal 𝜋 to obtain the 
maximum return
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agent

Input: state 𝑠

Output: action 𝑎
𝑆1 𝑆2 𝑆3𝑆0

𝐴0 𝐴1 𝐴2 𝐴3

𝑅0 𝑅1 𝑅2 𝑅3

𝜋 𝑎|𝑠



Model 

• For a Markov Decision Process 𝑆, 𝐴, 𝐼, 𝑇, 𝑅, 𝛾 , a 

model (in the context of reinforcement learning) is a 

parametrized representation of 𝑆, 𝐴, 𝐼, 𝑇, 𝑅

• Model based reinforcement learning

• Learning algorithms that directly access 𝐼, 𝑇 and 𝑅

• Model free reinforcement learning

• Learning algorithms that do not directly access 𝐼, 𝑇 and 𝑅

• Instead, gets samples of actions and rewards by interacting 

with the environment

23



Induced MP and MRP from MDP

For an MDP 𝑆, 𝐴, 𝐼, 𝑇, 𝑅, 𝛾 and a policy 𝜋, 

• Let 𝑇𝜋 𝑠, 𝑠′ = σ𝑎∈𝐴𝜋 𝑎|𝑠 𝑇 𝑎, 𝑠, 𝑠′ = σ𝑎∈𝐴𝜋 𝑎|𝑠 𝑃 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 .

Then 𝑆, 𝐼, 𝑇𝜋 is a MP

• Let 𝑅𝜋 𝑠 = σ𝑎∈𝐴𝜋 𝑎|𝑠 𝑅 𝑎, 𝑠 = σ𝑎∈𝐴𝜋 𝑎|𝑠 𝑃 𝑅𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 .

Then 𝑆, 𝐼, 𝑇𝜋, 𝑅𝜋, 𝛾 is a MRP

24

𝑆1 𝑆2𝑆0

𝐴0 𝐴1 𝐴2

𝑅0 𝑅1 𝑅2

𝑆1 𝑆2𝑆0

𝐴0 𝐴1 𝐴2

𝑆1 𝑆2𝑆0

𝐴0 𝐴1 𝐴2

𝑅0 𝑅1 𝑅2

MDP

MP

MRP

𝑇𝜋 𝑠, 𝑠′

𝑇𝜋 𝑠, 𝑠′

𝑇 𝑎, 𝑠, 𝑠′

𝑅 𝑎, 𝑠

𝑅𝜋 𝑠



Exercise 5.2
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𝑆 = 1,2,3

𝑇𝑎=1 =
0.1 0.7 0.2
0.4 0 0.6
0 0 1.0

𝐴 = 1,2

𝑇𝑎=2 =
0.4 0 0.6
0 1.0 0
0 0 1.0

𝑆1 𝑆2 𝑆3𝑆0

𝐴0 𝐴1 𝐴2 𝐴3

𝑅0 𝑅1 𝑅2 𝑅3

𝐼 = 1.0 0.0 0.0
1

2

3

a=1:0.1

a=1:0.7

a=1:0.2

a=1:0.4

a=1:0.6

a=1:1.0

a=2:0.4

a=2:0.6

a=2:1.0

a=2:1.0

𝑅 1,2

𝑅 2,2

𝑅 1,3

𝑅 2,3

𝑅 1,1

𝑅 2,1

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 1, 𝑎 = 1 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 1, 𝑎 = 1 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 2, 𝑎 = 1 = 0.3, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 2, 𝑎 = 1 = 0.7

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 3, 𝑎 = 1 = 0.3, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 3, 𝑎 = 1 = 0.7

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 1, 𝑎 = 2 = 0.6, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 1, 𝑎 = 2 = 0.4

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 2, 𝑎 = 2 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 2, 𝑎 = 2 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 3, 𝑎 = 2 = 0.7, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 3, 𝑎 = 2 = 0.3

𝑅 1,1

𝑅 2,1

𝑅 1,2

𝑅 2,2

𝑅 1,3

𝑅 2,3

5.2) Obtain 𝑇𝜋 1,2

𝜋 1|1 = 0.4

𝜋 2|1 = 0.6

𝜋 1|2 = 0.8

𝜋 2|2 = 0.2

𝜋 1|3 = 0.3

𝜋 2|3 = 0.7



State-Value Function of MDP

State-value function 𝑣𝜋 𝑠 of MDP is an expected return starting from 
state 𝑠 and following the policy 𝜋
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𝑣𝑡
𝜋 𝑠

= ෍

𝑎𝑡,𝑟𝑡,𝑠𝑡+1,𝑎𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑠𝑡 = 𝑠 𝐺𝑡

= 𝐸 𝐺𝑡|𝑆𝑡 = 𝑠

𝑣𝑡
𝜋 𝑠 = 𝑣𝜋 𝑠 for any 𝑡

𝑆1 𝑆2 𝑆3𝑆0

𝐴0 𝐴1 𝐴2 𝐴3

𝑅0 𝑅1 𝑅2 𝑅3

e.g. 𝐸 𝐺2|𝑆2 = 𝑠



Action-Value Function of MDP

Action-value function 𝑞𝜋 𝑠, 𝑎 is an expected return starting 
from state 𝑠, taking action 𝑎, and then following policy 𝜋

27

𝑞𝑡
𝜋 𝑠, 𝑎

= ෍

𝑟𝑡,𝑠𝑡+1,𝑎𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑟𝑡 , 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝐺𝑡

= 𝐸 𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

𝑆1 𝑆2 𝑆3𝑆0

𝐴0 𝐴1 𝐴2 𝐴3

𝑅0 𝑅1 𝑅2 𝑅3

e.g. 𝐸 𝐺2|𝑆2 = 𝑠, 𝐴2 = 𝑎

𝑞𝑡
𝜋 𝑠, 𝑎 = 𝑞𝜋 𝑠, 𝑎 for any 𝑡



Appendix
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A Variation of Bellman Equation 

29

Multiply at both sides by 𝛾2𝑇2 , and then subtract

𝛾2𝑇2𝑽 = 𝛾2𝑇2𝑹+ 𝛾3𝑇3𝑹⋯+ 𝛾𝐾𝑇𝐾𝑹+ 𝛾𝐾+1𝑇𝐾+1𝑹+ 𝛾𝐾+2𝑇𝐾+2𝑹

𝐾 → ∞

𝑽 = 𝑹+ 𝛾𝑇𝑹 + 𝛾2𝑇2𝑽

𝑽 = 𝑹 + 𝛾𝑇𝑹 + 𝛾2𝑇2𝑹 + 𝛾3𝑇3𝑹⋯+ 𝛾𝐾𝑇𝐾𝑹

Bellman Equation
(in matrix form)  



Derivation of Bellman Equation for 𝑞𝜋 𝑠, 𝑎

30

𝑞𝜋 𝑠, 𝑎 = ෍

𝑟𝑡,𝑠𝑡+1,𝑎𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑟𝑡 , 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘

= ҧ𝑟 𝑎, 𝑠 +

෍

𝑠𝑡+1,𝑎𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑠𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝑃 𝑎𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑠𝑡+1 𝑃 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑠𝑡+1, 𝑎𝑡+1 ෍

𝑘=1

∞

𝛾𝑘𝑟𝑡+𝑘

=෍

𝑟𝑡

𝑃 𝑟𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝑟𝑡 + ෍

𝑠𝑡+1,𝑎𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2,⋯ , 𝑠∞|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ෍

𝑘=1

∞

𝛾𝑘𝑟𝑡+𝑘

= ҧ𝑟 𝑎, 𝑠 + ෍

𝑠𝑡+1,𝑎𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑠𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝑃 𝑎𝑡+1|𝑠𝑡+1 𝑃 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑠𝑡+1, 𝑎𝑡+1 ෍

𝑘=1

∞

𝛾𝑘𝑟𝑡+𝑘

Use the conditional independence structure of MDP

= ҧ𝑟 𝑎, 𝑠 + 𝛾෍

𝑠𝑡+1

𝑃 𝑠𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ෍

𝑎𝑡+1

𝑃 𝑎𝑡+1|𝑠𝑡+1 ෍

𝑟𝑡+1,𝑠𝑡+2,𝑎𝑡+2⋯,𝑠∞

𝑃 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑠𝑡+1, 𝑎𝑡+1 ෍

𝑘=0

∞

𝛾𝑘𝑟 𝑡+1 +𝑘

𝑞𝜋 𝑠, 𝑎 = ҧ𝑟 𝑠, 𝑎 + 𝛾෍

𝑠′

𝑇 𝑎, 𝑠, 𝑠′ ෍

𝑎′

𝜋 𝑎′|𝑠′ 𝑞𝜋 𝑠′, 𝑎′Therefore:


