
Speech and Language Processing
Lecture 6

Reinforcement Learning (2)
Bellman Equations

Information and Communications Engineering Course

Takahiro Shinozaki

Manabu Okumura

2024/10/2

1

Evaluations of Value Functions

In the previous lecture, we have defined value functions

• State-value function of MRP is the expected return starting from state 𝑠

• State-value function of MDP is an expected return starting from state 𝑠 and
following the policy 𝜋

• Action-value function of MDP is an expected return starting from state 𝑠, taking
action 𝑎, and then following policy 𝜋

We can evaluate these value functions by solving Bellman Equations

2

𝑣 𝑠 = 𝐸 𝐺𝑡|𝑆𝑡 = 𝑠 = ෍

𝑟𝑡,𝑠𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑟𝑡 , 𝑠𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑠𝑡 = 𝑠 𝐺𝑡

𝑣𝜋 𝑠 = 𝐸 𝐺𝑡|𝑆𝑡 = 𝑠 = ෍

𝑎𝑡,𝑟𝑡,𝑠𝑡+1,𝑎𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑠𝑡 = 𝑠 𝐺𝑡

𝑞𝑡
𝜋 𝑠, 𝑎 = 𝐸 𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = ෍

𝑟𝑡,𝑠𝑡+1,𝑎𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑟𝑡, 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝐺𝑡

Evaluation of 𝑣 𝑠 of MRP

3

𝑣 𝑠 = ෍

𝑟𝑡,𝑠𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑟𝑡, 𝑠𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠 ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘

(ҧ𝑟 𝑠 is reward function)

= ෍

𝑟𝑡,𝑠𝑡+1,⋯,𝑠∞

𝑃 𝑟𝑡 , 𝑠𝑡+1, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠 𝛾0𝑟𝑡 + ෍

𝑟𝑡,𝑠𝑡+1,⋯,𝑠∞

𝑃 𝑟𝑡 , 𝑠𝑡+1, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠 𝛾1𝑟𝑡+1 +⋯

=෍

𝑟𝑡

𝑃 𝑟𝑡 |𝑆𝑡 = 𝑠 𝛾0𝑟𝑡 +෍

𝑟𝑡+1

𝑃 𝑟𝑡+1|𝑆𝑡 = 𝑠 𝛾1𝑟𝑡+1 +෍

𝑟𝑡+2

𝑃 𝑟𝑡+2|𝑆𝑡 = 𝑠 𝛾2𝑟𝑡+2 +⋯

= 𝛾0෍

𝑟𝑡

𝑃 𝑟𝑡 |𝑆𝑡 = 𝑠 𝑟𝑡 + 𝛾1 ෍

𝑠𝑡+1

෍

𝑟𝑡+1

𝑃 𝑆𝑡+1 = 𝑠𝑡+1 |𝑆𝑡 = 𝑠 𝑃 𝑟𝑡+1|𝑠𝑡+1 𝑟𝑡+1 +⋯

= ҧ𝑟 𝑠 + 𝛾1෍

𝑠′

𝑃 𝑆𝑡+1 = 𝑠′ |𝑆𝑡 = 𝑠 ҧ𝑟 𝑠′ + 𝛾2෍

𝑠′

𝑃 𝑆𝑡+2 = 𝑠′ |𝑆𝑡 = 𝑠 ҧ𝑟 𝑠′ + ⋯

Matrix Representation

4

𝑽 =

𝑣 𝑠 = 1
𝑣 𝑠 = 2

⋮
𝑣 𝑠 = 𝑁

, 𝑹 =

ҧ𝑟 𝑠 = 1
ҧ𝑟 𝑠 = 2

⋮
ҧ𝑟 𝑠 = 𝑁

Let

𝑣 𝑠 = ҧ𝑟 𝑠 + 𝛾1෍

𝑠′

𝑃 𝑆𝑡+1 = 𝑠′ |𝑆𝑡 = 𝑠 ҧ𝑟 𝑠′ + 𝛾2෍

𝑠′

𝑃 𝑆𝑡+2 = 𝑠′ |𝑆𝑡 = 𝑠 ҧ𝑟 𝑠′ + ⋯

Because:

𝑽 = 𝑹+ 𝛾𝑻𝑹 + 𝛾2𝑻2𝑹+ 𝛾3𝑻3𝑹⋯

We have:

(𝑇 is the transition matrix)

Vector version of
geometric sequence

Bellman Equation for 𝑣 𝑠 of MRP

5

Multiply both sides by 𝛾𝑇

Then subtract.

𝑽 − 𝛾𝑻𝑽 = 𝑹 − 𝛾𝐾+1𝑻𝐾+1𝑹

𝑽 = 𝑹+ 𝛾𝑻𝑽

𝑽 = 𝑹 + 𝛾𝑻𝑹 + 𝛾2𝑻2𝑹+ 𝛾3𝑻3𝑹⋯+ 𝛾𝐾𝑻𝐾𝑹

𝛾𝑇𝑽 = 𝛾𝑻𝑹 + 𝛾2𝑻2𝑹+ 𝛾3𝑻3𝑹⋯+ 𝛾𝐾𝑻𝐾𝑹 + 𝛾𝐾+1𝑻𝐾+1𝑹

Bellman Equation
(in matrix form)

K→ ∞

Bellman Equation for 𝑣𝜋 𝑠 of MDP

Obtained from the induced MRP

6

𝑽𝝅 = 𝑹𝝅 + 𝛾𝑇𝜋𝑽𝝅

Bellman Equation
(in matrix form)

𝑇𝜋 𝑠, 𝑠′ = ෍

𝑎∈𝐴

𝜋 𝑎|𝑠 𝑇 𝑎, 𝑠, 𝑠′

𝑅𝜋 𝑠 = ෍

𝑎∈𝐴

𝜋 𝑎|𝑠 𝑅 𝑎, 𝑠

Let 𝑽𝝅 =

𝑣𝜋 𝑠 = 1
𝑣𝜋 𝑠 = 2

⋮
𝑣𝜋 𝑠 = 𝑁

Bellman Equation for 𝑞𝜋 𝑠, 𝑎 of MDP

7

𝑞𝜋 𝑠, 𝑎 = ҧ𝑟 𝑠, 𝑎 + 𝛾෍

𝑠′

𝑇 𝑎, 𝑠, 𝑠′ ෍

𝑎′

𝜋 𝑎′|𝑠′ 𝑞𝜋 𝑠′, 𝑎′Bellman Equation

ҧ𝑟 𝑎, 𝑠 = ഥ𝑟𝑡 𝑎, 𝑠 = 𝐸 𝑅𝑡 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 =෍

𝑟

𝑟 𝑃 𝑅𝑡 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

Let

be a reward function of MDP

𝑣𝜋 𝑠 = ෍

𝑎∈𝐴

𝜋 𝑎|𝑠 𝑞𝜋 𝑠, 𝑎Because

We can also have 𝑞𝜋 𝑠, 𝑎 = ҧ𝑟 𝑎, 𝑠 + 𝛾 ෍

𝑠′∈𝑆

𝑇 𝑎, 𝑠, 𝑠′ 𝑣𝜋 𝑠′

Direct Solution of Bellman Equation for 𝑣𝜋 𝑠

8

𝑽 = 𝑹 + 𝛾𝑻𝑽

𝑰 − 𝛾𝑻 𝑽 = 𝑹

𝑽 = 𝑰 − 𝛾𝑻 −𝟏𝑹

𝑽 =

𝑣𝜋 𝑠 = 1
𝑣𝜋 𝑠 = 2

⋮
𝑣𝜋 𝑠 = 𝑁

, 𝑹 =

𝑟𝜋 𝑠 = 1

𝑟𝜋 𝑠 = 2
⋮

𝑟𝜋 𝑠 = 𝑁

• The matrix size must be small to perform calculation (Calculation cost is 𝑂 𝑁3)
• The agent must be able to directly access 𝑃 𝑠′ |𝑠, 𝑎 and 𝑃 𝑟|𝑠, 𝑎

𝑆1 𝑆2 𝑆3𝑆0

𝐴0 𝐴1 𝐴2 𝐴3

𝑅0 𝑅1 𝑅2 𝑅3

𝜋 𝑎|𝑠

Iterative Solution by Dynamic Programming

• Consider an update formula:

• If it converges, the solution is obtained:

9

𝑽𝑘+1 = 𝑹+ 𝛾𝑻𝑽𝑘

𝑽 = 𝑽𝑘+1 = 𝑽𝑘

• Calculation cost of one update is 𝑂 𝑁2

• The agent must be able to directly access 𝑃 𝑠′ |𝑠, 𝑎 and 𝑃 𝑟|𝑠, 𝑎

𝑆1 𝑆2 𝑆3𝑆0

𝐴0 𝐴1 𝐴2 𝐴3

𝑅0 𝑅1 𝑅2 𝑅3

𝜋 𝑎|𝑠

Proof of Convergence

10

𝑬𝑘+1 = 𝑽𝑘+1 − 𝑽 = 𝜸𝑻 𝑽𝑘 − 𝑽 = 𝛾𝑻𝑬𝑘 = 𝛾𝑘+1𝑻𝑘+1𝑬0

𝑽𝑘+1 = 𝑹 + 𝛾𝑻𝑽𝑘

𝑽 = 𝑹 + 𝛾𝑻𝑽
Subtract

lim
𝑘→∞

𝑬𝑘 =𝟎 0 < 𝛾 < 1

c.f. Jacobi method, Gauss-Seidel method

Evaluation by Sample Approximation

11

𝑣𝑘+1
𝜋 𝑠 = 𝑟𝜋 𝑠 + 𝛾෍

𝑠′

𝑇𝜋 𝑠, 𝑠′ 𝑣𝑘
𝜋 𝑠′

=෍

𝑟

𝑟෍

𝑎∈𝐴

𝜋 𝑎|𝑠 𝑃 𝑟|𝑠, 𝑎 + 𝛾෍

𝑠′

෍

𝑎∈𝐴

𝜋 𝑎|𝑠 𝑃 𝑠′ |𝑠, 𝑎 𝑣𝑘
𝜋 𝑠′

=෍

𝑟

෍

𝑠′

෍

𝑎

𝜋 𝑎|𝑠 𝑃 𝑟|𝑠, 𝑎 𝑃 𝑠′ |𝑠, 𝑎 𝑟 + 𝛾𝑣𝑘
𝜋 𝑠′

= 𝐸 𝑟 + 𝛾𝑣𝑘
𝜋 𝑠′ |𝑠

≈
1

𝑀
෍

𝑚=1

𝑀

𝑟𝑚 + 𝛾𝑣𝑘
𝜋 𝑠𝑚′ , 𝑟𝑚, 𝑠𝑚

′ , 𝑎𝑚
′ ~𝑃 𝑟, 𝑠′, 𝑎′|𝑠

𝑞𝜋 𝑠, 𝑎 𝑘+1 = 𝐸 𝑟 + 𝛾𝑞𝜋 𝑠′, 𝑎′ 𝑘|𝑠, 𝑎

≈
1

𝑀
෍

𝑚=1

𝑀

𝑟𝑚 + 𝛾𝑞𝜋 𝑠𝑚
′ , 𝑎𝑚

′
𝑘 , 𝑟𝑚, 𝑠𝑚

′ , 𝑎𝑚
′ ~𝑃 𝑟, 𝑠′, 𝑎′|𝑠, 𝑎

Incremental Average Calculation

• Cumulative Average

• Exponential Moving Average

12

𝐶𝐴𝑀 =
𝑥1 + 𝑥2 +⋯+ 𝑥𝑀

𝑀

𝐶𝐴𝑀 = 𝐶𝐴𝑀−1 +
1

𝑀
𝑥𝑀 − 𝐶𝐴𝑀−1Let

Then

𝐸𝑀𝐴𝑀 = 𝐸𝑀𝐴𝑀−1 + 𝛼 𝑥𝑀 − 𝐸𝑀𝐴𝑀−1Let

𝐸𝑀𝐴𝑀 =
1 − 𝛼 𝑀−1𝑥1 + 1 − 𝛼 𝑀−2𝑥2 +⋯+ 1 − 𝛼 0𝑥𝑀

1 − 𝛼 𝑀−1 +⋯+ 1 − 𝛼 + 1
Then

Put larger weights on recent samples and gradually forget old samples

Temporal Difference (TD) Method

Evaluate the value functions by sample approximation and incremental
average calculation

13

𝑣𝑘+1
𝜋 𝑠 ← 𝑣𝑘

𝜋 𝑠 + 𝛼 𝑟𝑚 + 𝛾𝑣𝑘
𝜋 𝑠𝑚′ − 𝑣𝑘

𝜋 𝑠

𝑞𝜋 𝑠, 𝑎 𝑘+1 ← 𝑞𝜋 𝑠, 𝑎 𝑘 + 𝛼 𝑟𝑚 + 𝛾𝑞𝜋 𝑠𝑚
′ , 𝑎𝑚

′
𝑘 − 𝑞𝜋 𝑠, 𝑎 𝑘

Referred to as TD target

Optimal Policy

• Partial ordering of policies
policy 𝜋′ is better than policy 𝜋 if it gives higher value for all
states

• There exists an optimal policy 𝜋∗ that is better than or
equal to all other policies

• The goal of reinforcement learning is to find an optimal
policy

14

𝜋 ≤ 𝜋′ if ∀𝑠 𝑣𝜋 𝑠 ≤ 𝑣𝜋′ 𝑠

∃𝜋∗∀𝜋 𝜋 ≤ 𝜋∗

Optimal Value Functions

• The optimal value functions are the maximum
value function over all policies

• When we have 𝑞∗ 𝑠, 𝑎 , we can obtain an optimal
policy by:

15

𝑣∗ 𝑠 = max
𝜋

𝑣𝜋 𝑠

𝑞∗ 𝑠, 𝑎 = max
𝜋

𝑞𝜋 𝑠, 𝑎

𝜋∗ 𝑎|𝑠 = ൝
1 𝑖𝑓 𝑎 = argmax

𝑎
𝑞∗ 𝑠, 𝑎

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Exploration and Exploitation

Taking balance between search and utilize existing
knowledge is important

• If we always seek unknown possibility, our average
performance will be poor

• If we always act within existing knowledge, we have
no chance of improvement

16
𝑞1

𝑞2

𝑞∗
𝜋∗

𝜋2

𝜋1

𝜖-Greedy Exploration

• Given an action-value function 𝑄 𝑠, 𝑎 , defines the
policy 𝜋 𝑎|𝑠 as:

17

𝜋 𝑎|𝑠 =

𝜖

𝑚
+ 1 − 𝜖

𝜖

𝑚

If 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′∈𝐴𝑄 𝑠, 𝑎′

Otherwise

SARSA: An Iterative Method to Obtain 𝑞∗ 𝑠, 𝑎

18

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

𝑠 ← 𝑠′

𝑎 ← 𝑎′

𝑠 𝑠′

𝑎 𝑎′

Choose an action 𝑎 at state 𝑠
based on a policy derived from
𝑄 𝑠, 𝑎 using, e.g., 𝜖-greedy

𝑟

Execute the action 𝑎, and
observe the reward 𝑟 and
transit to the next state 𝑠′

Choose an action 𝑎′

at state 𝑠′ based on a policy
derived from 𝑄 𝑠′, 𝑎′ using,

e.g., 𝜖-greedy

Initialize 𝑄 𝑠, 𝑎 and 𝑠.

Repeat

• SARSA is model free
• SARSA is on-policy

At each episode:

Let 𝑄 𝑠, 𝑎 be a table of 𝑞 𝑠, 𝑎 for 𝑠 and 𝑎

Q-Learning

19

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

𝑠 ← 𝑠′

𝑠 𝑠′
𝑎 𝑎′

Choose an action 𝑎 at state 𝑠
based on a policy derived from
𝑄 𝑠, 𝑎 using, e.g., 𝜖-greedy

𝑟

Execute the action 𝑎, and
observe the reward 𝑟and the

next state 𝑠′

Initialize 𝑄 𝑠, 𝑎 and 𝑠.
Repeat

• Q-Learning is model free
• Q-Learning is off-policy

At each episode:

NN Implementation of Value Functions

20

NN

state 𝑠

state value 𝑣 𝑠

NN

action value 𝑞𝜋 𝑠, 𝑎

state 𝑠

Output

Input action 𝑎

NN

state 𝑠

𝑞𝜋 𝑠, 𝑎 = 1 , 𝑞𝜋 𝑠, 𝑎 = 2 ,⋯ , 𝑞𝜋 𝑠, 𝑎 = 𝑁

By using NN instead of a table, we can handle larger state space

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

Minimize 𝐿 = 𝑟 + 𝛾max
𝑎′

𝑄𝑁𝑁 𝑠′, 𝑎′ − 𝑄𝑁𝑁 𝑠, 𝑎
2

However, the learning is instable → DQN

Deep Q-Learning (DQN)

21

V. Mnih+, "Human-level control through deep reinforcement learning," Nature, 2015

𝑟 + 𝛾max
𝑎′

෢𝑄𝜃− 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

☆Uses separated networks
(prediction network 𝑄𝜃 and
target network ෢𝑄𝜃−)

☆ Uses experience replay

NN version of Q-learning + some heuristics

Policy Gradient

• Directly parametrize the policy function and optimize policy performance
objective

• Policy gradient theorem

22

R. Sutton+, "Policy Gradient Methods for Reinforcement Learning with Function Approximation," NISP, 1999
R. Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning," Machine Learning, 1992

𝐽 𝜃 =෍

𝑠

𝑑𝜋𝜃 𝑠 𝑉𝜋𝜃 𝑠 =෍

𝑠

𝑑𝜋𝜃 𝑠 ෍
𝑎∈𝐴

𝜋 𝑎|𝑠 𝑞𝜋 𝑠, 𝑎 ,

𝑑𝜋𝜃 𝑠 = lim
𝑡→∞

𝑃 𝑠𝑡 = 𝑠|𝑠0, 𝜋𝜃

∇𝜃𝐽 𝜃 = 𝐸𝜋𝜃 ∇𝜃𝑙𝑜𝑔𝜋𝜃 𝑠, 𝑎 𝑄𝜋𝜃 𝑠, 𝑎

REINFORCE

• Use return as an unbiased sample of 𝑄𝜋𝜃 𝑠, 𝑎

23

𝜃 ⟵ 𝜃 + 𝛼𝐺𝑡∇𝜃log𝜋𝜃 𝑠𝑡 , 𝑎𝑡

J. Schulman+, "High-Dimensional Continuous Control Using Generalized Advantage
Estimation," ICLR 2016

∇𝜃𝐽 𝜃 = 𝐸𝜋𝜃 ∇𝜃𝑙𝑜𝑔𝜋𝜃 𝑠, 𝑎 𝑄𝜋𝜃 𝑠, 𝑎 ≈ 𝐸𝜋𝜃 ∇𝜃𝑙𝑜𝑔𝜋𝜃 𝑠, 𝑎 𝐺𝑡

Actor-Critic

• Parameterize 𝑄𝜋𝜃 𝑠, 𝑎 and learns it together with
policy 𝜋𝜃

• Actor: 𝜋𝜃 (with parameters 𝜃)

• Critic:𝑄𝑤 𝑠, 𝑎 (with parameters w)

24

∇𝜃𝐽 𝜃 = 𝐸𝜋𝜃 ∇𝜃𝑙𝑜𝑔𝜋𝜃 𝑠, 𝑎 𝑄𝜋𝜃 𝑠, 𝑎 ≈ 𝐸𝜋𝜃 ∇𝜃𝑙𝑜𝑔𝜋𝜃 𝑠, 𝑎 𝑄𝑤 𝑠, 𝑎

A Demo of Language Acquisition

25

1. Observation based learning
(Unsupervised Learning)

Agent observes unsegmented spoken
sound examples

2. Dialogue based learning
(Reinforcement Learning)

By pronouncing a command (up, down, left, right, forward, backward),
agent can move one step to that direction at a time

Unsegmented sound sample

Agent is randomly positioned at a 3-D point (x, y, z) and wants to
reach the origin

Initially, agent has no language
knowledge

𝑥

𝑦

𝑧
I am at (-2, 3, 3) and I

want to reach the origin!
I will try saying some

“words” to move

• The robot has an intrinsic motivation to go to (0,0,0), i.e. homing instinct
• By correctly pronouncing a directional voice command, the robot can move one unit in that direction
• Initially, the robot has no language knowledge, and needs to learn the vocabulary of the voice

commands and their meanings from scratch without relying on labeled data

Language Acquisition by The Agent

26

Moving process at episode 0 Moving process at episode 5

• First five actions at episode 0 • First five actions at episode 5

Exercise 6.1, 6.2

Consider the following Markov Reward Process.

27

𝑆 = 1,2,3

𝑇 =
0.1 0.7 0.2
0.4 0 0.6
0 0 1.0

𝐼 = 1.0 0.0 0.0

1
2

3

0.1

0.7

0.2

0.4

0.6

1.0

𝑅 1

𝑅 2

𝑅 3𝑃 𝑅𝑡 = 0|𝑆𝑡 = 1 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 1 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 2 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 2 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 3 = 0.7, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 3 = 0.3

6.1) Obtain ҧ𝑟 𝑠 = 1

6.2) Obtain 𝑣 𝑠 = 3

𝛾 = 0.8

