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Evaluations of Value Functions

In the previous lecture, we have defined value functions

• State-value function of MRP is the expected return starting from state 𝑠

• State-value function of MDP is an expected return starting from state 𝑠 and 
following the policy 𝜋

• Action-value function of MDP is an expected return starting from state 𝑠, taking 
action 𝑎, and then following policy 𝜋

We can evaluate these value functions by solving Bellman Equations
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𝑣 𝑠 = 𝐸 𝐺𝑡|𝑆𝑡 = 𝑠 = ෍

𝑟𝑡,𝑠𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑟𝑡 , 𝑠𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑠𝑡 = 𝑠 𝐺𝑡

𝑣𝜋 𝑠 = 𝐸 𝐺𝑡|𝑆𝑡 = 𝑠 = ෍

𝑎𝑡,𝑟𝑡,𝑠𝑡+1,𝑎𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑠𝑡 = 𝑠 𝐺𝑡

𝑞𝑡
𝜋 𝑠, 𝑎 = 𝐸 𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = ෍

𝑟𝑡,𝑠𝑡+1,𝑎𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑟𝑡, 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝐺𝑡



Evaluation of 𝑣 𝑠 of MRP
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𝑣 𝑠 = ෍

𝑟𝑡,𝑠𝑡+1,𝑟𝑡+1,𝑠𝑡+2,⋯,𝑠∞

𝑃 𝑟𝑡, 𝑠𝑡+1, 𝑟𝑡+1, 𝑠𝑡+2, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠 ෍

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘

( ҧ𝑟 𝑠 is reward function)

= ෍

𝑟𝑡,𝑠𝑡+1,⋯,𝑠∞

𝑃 𝑟𝑡 , 𝑠𝑡+1, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠 𝛾0𝑟𝑡 + ෍

𝑟𝑡,𝑠𝑡+1,⋯,𝑠∞

𝑃 𝑟𝑡 , 𝑠𝑡+1, ⋯ , 𝑠∞|𝑆𝑡 = 𝑠 𝛾1𝑟𝑡+1 +⋯

=෍

𝑟𝑡

𝑃 𝑟𝑡 |𝑆𝑡 = 𝑠 𝛾0𝑟𝑡 +෍

𝑟𝑡+1

𝑃 𝑟𝑡+1|𝑆𝑡 = 𝑠 𝛾1𝑟𝑡+1 +෍

𝑟𝑡+2

𝑃 𝑟𝑡+2|𝑆𝑡 = 𝑠 𝛾2𝑟𝑡+2 +⋯

= 𝛾0෍

𝑟𝑡

𝑃 𝑟𝑡 |𝑆𝑡 = 𝑠 𝑟𝑡 + 𝛾1 ෍

𝑠𝑡+1

෍

𝑟𝑡+1

𝑃 𝑆𝑡+1 = 𝑠𝑡+1 |𝑆𝑡 = 𝑠 𝑃 𝑟𝑡+1|𝑠𝑡+1 𝑟𝑡+1 +⋯

= ҧ𝑟 𝑠 + 𝛾1෍

𝑠′

𝑃 𝑆𝑡+1 = 𝑠′ |𝑆𝑡 = 𝑠 ҧ𝑟 𝑠′ + 𝛾2෍

𝑠′

𝑃 𝑆𝑡+2 = 𝑠′ |𝑆𝑡 = 𝑠 ҧ𝑟 𝑠′ + ⋯



Matrix Representation
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𝑽 =

𝑣 𝑠 = 1
𝑣 𝑠 = 2

⋮
𝑣 𝑠 = 𝑁

, 𝑹 =

ҧ𝑟 𝑠 = 1
ҧ𝑟 𝑠 = 2

⋮
ҧ𝑟 𝑠 = 𝑁

Let

𝑣 𝑠 = ҧ𝑟 𝑠 + 𝛾1෍

𝑠′

𝑃 𝑆𝑡+1 = 𝑠′ |𝑆𝑡 = 𝑠 ҧ𝑟 𝑠′ + 𝛾2෍

𝑠′

𝑃 𝑆𝑡+2 = 𝑠′ |𝑆𝑡 = 𝑠 ҧ𝑟 𝑠′ + ⋯

Because:

𝑽 = 𝑹+ 𝛾𝑻𝑹 + 𝛾2𝑻2𝑹+ 𝛾3𝑻3𝑹⋯

We have:

(𝑇 is the transition matrix)

Vector version of 
geometric sequence



Bellman Equation for 𝑣 𝑠 of MRP
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Multiply both sides by 𝛾𝑇

Then subtract.

𝑽 − 𝛾𝑻𝑽 = 𝑹 − 𝛾𝐾+1𝑻𝐾+1𝑹

𝑽 = 𝑹+ 𝛾𝑻𝑽

𝑽 = 𝑹 + 𝛾𝑻𝑹 + 𝛾2𝑻2𝑹+ 𝛾3𝑻3𝑹⋯+ 𝛾𝐾𝑻𝐾𝑹

𝛾𝑇𝑽 = 𝛾𝑻𝑹 + 𝛾2𝑻2𝑹+ 𝛾3𝑻3𝑹⋯+ 𝛾𝐾𝑻𝐾𝑹 + 𝛾𝐾+1𝑻𝐾+1𝑹

Bellman Equation
(in matrix form)  

K→ ∞



Bellman Equation for 𝑣𝜋 𝑠 of MDP

Obtained from the induced MRP
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𝑽𝝅 = 𝑹𝝅 + 𝛾𝑇𝜋𝑽𝝅

Bellman Equation
(in matrix form) 

𝑇𝜋 𝑠, 𝑠′ = ෍

𝑎∈𝐴

𝜋 𝑎|𝑠 𝑇 𝑎, 𝑠, 𝑠′

𝑅𝜋 𝑠 = ෍

𝑎∈𝐴

𝜋 𝑎|𝑠 𝑅 𝑎, 𝑠

Let 𝑽𝝅 =

𝑣𝜋 𝑠 = 1
𝑣𝜋 𝑠 = 2

⋮
𝑣𝜋 𝑠 = 𝑁



Bellman Equation for 𝑞𝜋 𝑠, 𝑎 of MDP
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𝑞𝜋 𝑠, 𝑎 = ҧ𝑟 𝑠, 𝑎 + 𝛾෍

𝑠′

𝑇 𝑎, 𝑠, 𝑠′ ෍

𝑎′

𝜋 𝑎′|𝑠′ 𝑞𝜋 𝑠′, 𝑎′Bellman Equation

ҧ𝑟 𝑎, 𝑠 = ഥ𝑟𝑡 𝑎, 𝑠 = 𝐸 𝑅𝑡 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 =෍

𝑟

𝑟 𝑃 𝑅𝑡 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

Let

be a reward function of MDP

𝑣𝜋 𝑠 = ෍

𝑎∈𝐴

𝜋 𝑎|𝑠 𝑞𝜋 𝑠, 𝑎Because

We can also have 𝑞𝜋 𝑠, 𝑎 = ҧ𝑟 𝑎, 𝑠 + 𝛾 ෍

𝑠′∈𝑆

𝑇 𝑎, 𝑠, 𝑠′ 𝑣𝜋 𝑠′



Direct Solution of Bellman Equation for 𝑣𝜋 𝑠
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𝑽 = 𝑹 + 𝛾𝑻𝑽

𝑰 − 𝛾𝑻 𝑽 = 𝑹

𝑽 = 𝑰 − 𝛾𝑻 −𝟏𝑹

𝑽 =

𝑣𝜋 𝑠 = 1
𝑣𝜋 𝑠 = 2

⋮
𝑣𝜋 𝑠 = 𝑁

, 𝑹 =

𝑟𝜋 𝑠 = 1

𝑟𝜋 𝑠 = 2
⋮

𝑟𝜋 𝑠 = 𝑁

• The matrix size must be small to perform calculation (Calculation cost is 𝑂 𝑁3 )
• The agent must be able to directly access 𝑃 𝑠′ |𝑠, 𝑎 and 𝑃 𝑟|𝑠, 𝑎

𝑆1 𝑆2 𝑆3𝑆0

𝐴0 𝐴1 𝐴2 𝐴3

𝑅0 𝑅1 𝑅2 𝑅3

𝜋 𝑎|𝑠



Iterative Solution by Dynamic Programming

• Consider an update formula:

• If it converges, the solution is obtained:
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𝑽𝑘+1 = 𝑹+ 𝛾𝑻𝑽𝑘

𝑽 = 𝑽𝑘+1 = 𝑽𝑘

• Calculation cost of one update is 𝑂 𝑁2

• The agent must be able to directly access 𝑃 𝑠′ |𝑠, 𝑎 and 𝑃 𝑟|𝑠, 𝑎

𝑆1 𝑆2 𝑆3𝑆0

𝐴0 𝐴1 𝐴2 𝐴3

𝑅0 𝑅1 𝑅2 𝑅3

𝜋 𝑎|𝑠



Proof of Convergence
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𝑬𝑘+1 = 𝑽𝑘+1 − 𝑽 = 𝜸𝑻 𝑽𝑘 − 𝑽 = 𝛾𝑻𝑬𝑘 = 𝛾𝑘+1𝑻𝑘+1𝑬0

𝑽𝑘+1 = 𝑹 + 𝛾𝑻𝑽𝑘

𝑽 = 𝑹 + 𝛾𝑻𝑽
Subtract

lim
𝑘→∞

𝑬𝑘 =𝟎 0 < 𝛾 < 1

c.f. Jacobi method, Gauss-Seidel method



Evaluation by Sample Approximation
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𝑣𝑘+1
𝜋 𝑠 = 𝑟𝜋 𝑠 + 𝛾෍

𝑠′

𝑇𝜋 𝑠, 𝑠′ 𝑣𝑘
𝜋 𝑠′

=෍

𝑟

𝑟෍

𝑎∈𝐴

𝜋 𝑎|𝑠 𝑃 𝑟|𝑠, 𝑎 + 𝛾෍

𝑠′

෍

𝑎∈𝐴

𝜋 𝑎|𝑠 𝑃 𝑠′ |𝑠, 𝑎 𝑣𝑘
𝜋 𝑠′

=෍

𝑟

෍

𝑠′

෍

𝑎

𝜋 𝑎|𝑠 𝑃 𝑟|𝑠, 𝑎 𝑃 𝑠′ |𝑠, 𝑎 𝑟 + 𝛾𝑣𝑘
𝜋 𝑠′

= 𝐸 𝑟 + 𝛾𝑣𝑘
𝜋 𝑠′ |𝑠

≈
1

𝑀
෍

𝑚=1

𝑀

𝑟𝑚 + 𝛾𝑣𝑘
𝜋 𝑠𝑚′ , 𝑟𝑚, 𝑠𝑚

′ , 𝑎𝑚
′ ~𝑃 𝑟, 𝑠′, 𝑎′|𝑠

𝑞𝜋 𝑠, 𝑎 𝑘+1 = 𝐸 𝑟 + 𝛾𝑞𝜋 𝑠′, 𝑎′ 𝑘|𝑠, 𝑎

≈
1

𝑀
෍

𝑚=1

𝑀

𝑟𝑚 + 𝛾𝑞𝜋 𝑠𝑚
′ , 𝑎𝑚

′
𝑘 , 𝑟𝑚, 𝑠𝑚

′ , 𝑎𝑚
′ ~𝑃 𝑟, 𝑠′, 𝑎′|𝑠, 𝑎



Incremental Average Calculation

• Cumulative Average

• Exponential Moving Average
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𝐶𝐴𝑀 =
𝑥1 + 𝑥2 +⋯+ 𝑥𝑀

𝑀

𝐶𝐴𝑀 = 𝐶𝐴𝑀−1 +
1

𝑀
𝑥𝑀 − 𝐶𝐴𝑀−1Let 

Then 

𝐸𝑀𝐴𝑀 = 𝐸𝑀𝐴𝑀−1 + 𝛼 𝑥𝑀 − 𝐸𝑀𝐴𝑀−1Let 

𝐸𝑀𝐴𝑀 =
1 − 𝛼 𝑀−1𝑥1 + 1 − 𝛼 𝑀−2𝑥2 +⋯+ 1 − 𝛼 0𝑥𝑀

1 − 𝛼 𝑀−1 +⋯+ 1 − 𝛼 + 1
Then 

Put larger weights on recent samples and gradually forget old samples



Temporal Difference (TD) Method 

Evaluate the value functions by sample approximation and incremental 
average calculation

13

𝑣𝑘+1
𝜋 𝑠 ← 𝑣𝑘

𝜋 𝑠 + 𝛼 𝑟𝑚 + 𝛾𝑣𝑘
𝜋 𝑠𝑚′ − 𝑣𝑘

𝜋 𝑠

𝑞𝜋 𝑠, 𝑎 𝑘+1 ← 𝑞𝜋 𝑠, 𝑎 𝑘 + 𝛼 𝑟𝑚 + 𝛾𝑞𝜋 𝑠𝑚
′ , 𝑎𝑚

′
𝑘 − 𝑞𝜋 𝑠, 𝑎 𝑘

Referred to as TD target



Optimal Policy

• Partial ordering of policies
policy 𝜋′ is better than policy 𝜋 if it gives higher value for all 
states  

• There exists an optimal policy 𝜋∗ that is better than or 
equal to all other policies

• The goal of reinforcement learning is to find an optimal 
policy
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𝜋 ≤ 𝜋′ if ∀𝑠 𝑣𝜋 𝑠 ≤ 𝑣𝜋′ 𝑠

∃𝜋∗∀𝜋 𝜋 ≤ 𝜋∗



Optimal Value Functions

• The optimal value functions are the maximum 
value function over all policies

• When we have 𝑞∗ 𝑠, 𝑎 , we can obtain an optimal 
policy by:
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𝑣∗ 𝑠 = max
𝜋

𝑣𝜋 𝑠

𝑞∗ 𝑠, 𝑎 = max
𝜋

𝑞𝜋 𝑠, 𝑎

𝜋∗ 𝑎|𝑠 = ൝
1 𝑖𝑓 𝑎 = argmax

𝑎
𝑞∗ 𝑠, 𝑎

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Exploration and Exploitation

Taking balance between search and utilize existing 
knowledge is important

• If we always seek unknown possibility, our average 
performance will be poor

• If we always act within existing knowledge, we have 
no chance of improvement

16
𝑞1

𝑞2

𝑞∗
𝜋∗

𝜋2

𝜋1



𝜖-Greedy Exploration

• Given an action-value function 𝑄 𝑠, 𝑎 , defines the 
policy 𝜋 𝑎|𝑠 as:
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𝜋 𝑎|𝑠 =

𝜖

𝑚
+ 1 − 𝜖

𝜖

𝑚

If 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′∈𝐴𝑄 𝑠, 𝑎′

Otherwise



SARSA: An Iterative Method to Obtain 𝑞∗ 𝑠, 𝑎
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𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

𝑠 ← 𝑠′

𝑎 ← 𝑎′

𝑠 𝑠′

𝑎 𝑎′

Choose an action 𝑎 at state 𝑠
based on a policy derived from 
𝑄 𝑠, 𝑎 using, e.g., 𝜖-greedy

𝑟

Execute the action 𝑎, and 
observe the reward 𝑟 and 
transit to the next state 𝑠′

Choose an action 𝑎′

at state 𝑠′ based on a policy 
derived from 𝑄 𝑠′, 𝑎′ using, 

e.g., 𝜖-greedy

Initialize 𝑄 𝑠, 𝑎 and 𝑠.

Repeat

• SARSA is model free
• SARSA is on-policy

At each episode: 

Let 𝑄 𝑠, 𝑎 be a table of 𝑞 𝑠, 𝑎 for 𝑠 and 𝑎



Q-Learning
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𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

𝑠 ← 𝑠′

𝑠 𝑠′
𝑎 𝑎′

Choose an action 𝑎 at state 𝑠
based on a policy derived from 
𝑄 𝑠, 𝑎 using, e.g., 𝜖-greedy

𝑟

Execute the action 𝑎, and 
observe the reward 𝑟and the 

next state 𝑠′

Initialize 𝑄 𝑠, 𝑎 and 𝑠.
Repeat

• Q-Learning is model free
• Q-Learning is off-policy

At each episode: 



NN Implementation of Value Functions
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NN

state 𝑠

state value 𝑣 𝑠

NN

action value 𝑞𝜋 𝑠, 𝑎

state 𝑠

Output 

Input action 𝑎

NN

state 𝑠

𝑞𝜋 𝑠, 𝑎 = 1 , 𝑞𝜋 𝑠, 𝑎 = 2 ,⋯ , 𝑞𝜋 𝑠, 𝑎 = 𝑁

By using NN instead of a table, we can handle larger state space

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

Minimize 𝐿 = 𝑟 + 𝛾max
𝑎′

𝑄𝑁𝑁 𝑠′, 𝑎′ − 𝑄𝑁𝑁 𝑠, 𝑎
2

However, the learning is instable → DQN



Deep Q-Learning (DQN)

21

V. Mnih+, "Human-level control through deep reinforcement learning," Nature, 2015

𝑟 + 𝛾max
𝑎′

෢𝑄𝜃− 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎
2

☆Uses separated networks
(prediction network 𝑄𝜃 and 
target network ෢𝑄𝜃−)

☆ Uses experience replay

NN version of Q-learning + some heuristics



Policy Gradient

• Directly parametrize the policy function and optimize policy performance 
objective

• Policy gradient theorem

22

R. Sutton+, "Policy Gradient Methods for Reinforcement Learning with Function Approximation," NISP, 1999
R. Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning," Machine Learning, 1992

𝐽 𝜃 =෍

𝑠

𝑑𝜋𝜃 𝑠 𝑉𝜋𝜃 𝑠 =෍

𝑠

𝑑𝜋𝜃 𝑠 ෍
𝑎∈𝐴

𝜋 𝑎|𝑠 𝑞𝜋 𝑠, 𝑎 ,

𝑑𝜋𝜃 𝑠 = lim
𝑡→∞

𝑃 𝑠𝑡 = 𝑠|𝑠0, 𝜋𝜃

∇𝜃𝐽 𝜃 = 𝐸𝜋𝜃 ∇𝜃𝑙𝑜𝑔𝜋𝜃 𝑠, 𝑎 𝑄𝜋𝜃 𝑠, 𝑎



REINFORCE

• Use return as an unbiased sample of 𝑄𝜋𝜃 𝑠, 𝑎

23

𝜃 ⟵ 𝜃 + 𝛼𝐺𝑡∇𝜃log𝜋𝜃 𝑠𝑡 , 𝑎𝑡

J. Schulman+, "High-Dimensional Continuous Control Using Generalized Advantage 
Estimation," ICLR 2016

∇𝜃𝐽 𝜃 = 𝐸𝜋𝜃 ∇𝜃𝑙𝑜𝑔𝜋𝜃 𝑠, 𝑎 𝑄𝜋𝜃 𝑠, 𝑎 ≈ 𝐸𝜋𝜃 ∇𝜃𝑙𝑜𝑔𝜋𝜃 𝑠, 𝑎 𝐺𝑡



Actor-Critic

• Parameterize 𝑄𝜋𝜃 𝑠, 𝑎 and learns it together with 
policy 𝜋𝜃

• Actor: 𝜋𝜃 (with parameters 𝜃)

• Critic:𝑄𝑤 𝑠, 𝑎 (with parameters w)
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∇𝜃𝐽 𝜃 = 𝐸𝜋𝜃 ∇𝜃𝑙𝑜𝑔𝜋𝜃 𝑠, 𝑎 𝑄𝜋𝜃 𝑠, 𝑎 ≈ 𝐸𝜋𝜃 ∇𝜃𝑙𝑜𝑔𝜋𝜃 𝑠, 𝑎 𝑄𝑤 𝑠, 𝑎



A Demo of Language Acquisition
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1. Observation based learning
(Unsupervised Learning)

Agent observes unsegmented spoken 
sound examples

2. Dialogue based learning
(Reinforcement Learning)

By pronouncing a command (up, down, left, right, forward, backward), 
agent can move one step to that direction at a time

Unsegmented sound sample

Agent is randomly positioned at a 3-D point (x, y, z) and wants to 
reach the origin

Initially, agent has no language 
knowledge 

𝑥

𝑦

𝑧
I am at (-2, 3, 3) and I 

want to reach the origin! 
I will try saying some 

“words” to move

• The robot has an intrinsic motivation to go to (0,0,0), i.e. homing instinct
• By correctly pronouncing a directional voice command, the robot can move one unit in that direction
• Initially, the robot has no language knowledge, and needs to learn the vocabulary of the voice 

commands and their meanings from scratch without relying on labeled data



Language Acquisition by The Agent
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Moving process at episode 0 Moving process at episode 5

• First five actions at episode 0 • First five actions at episode 5



Exercise 6.1, 6.2

Consider the following Markov Reward Process.
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𝑆 = 1,2,3

𝑇 =
0.1 0.7 0.2
0.4 0 0.6
0 0 1.0

𝐼 = 1.0 0.0 0.0

1
2

3

0.1

0.7

0.2

0.4

0.6

1.0

𝑅 1

𝑅 2

𝑅 3𝑃 𝑅𝑡 = 0|𝑆𝑡 = 1 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 1 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 2 = 0.2, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 2 = 0.8

𝑃 𝑅𝑡 = 0|𝑆𝑡 = 3 = 0.7, 𝑃 𝑅𝑡 = 1|𝑆𝑡 = 3 = 0.3

6.1) Obtain ҧ𝑟 𝑠 = 1

6.2) Obtain 𝑣 𝑠 = 3

𝛾 = 0.8


